Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Antibiotics (Basel) ; 12(7)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37508285

ABSTRACT

Salmonella enterica is a causative pathogen of Salmonellosis, a zoonosis causing global disease and financial losses every year. Pigs may be carriers of Salmonella and contribute to the spread to humans and food products. Salmonella may persist as biofilms. Biofilms are bacterial aggregates embedded in a self-produced matrix and are known to withstand disinfectants. We studied the effect of glutaraldehyde and peracetic acid, two active substances frequently used in disinfectant formulations in the pig industry, on representative biofilm-residing wild-type Salmonella collected from pig housings in the United Kingdom (UK). We screened biofilm production of strains using the microtiter plate (MTP) assay and Congo Red Coomassie Blue (CRCB) agar method. Previously published stainless-steel coupon (SSCA), polyvinylchloride coupon (PCA), and glass bead (GBA) assays were used for disinfection studies. The mean reduction in the tested wild-type strains met the criterion of ≥4 log10 CFU at a disinfectant concentration of 0.05% with SSCA and GBA, and 0.005% with PCA for peracetic acid, along with 0.5% for glutaraldehyde with all three assays on the mean. At these concentrations, both tested disinfectants are suitable for disinfection of pig housings against Salmonella. When evaluating the efficacy of disinfectants, biofilms should be included, as higher disinfectant concentrations are necessary compared to planktonic bacteria.

2.
Microorganisms ; 11(3)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36985334

ABSTRACT

Within the European Union, Salmonella is frequently reported in food and feed products. A major route of transmission is upon contact with contaminated surfaces. In nature, bacteria such as Salmonella are often encountered in biofilms, where they are protected against antibiotics and disinfectants. Therefore, the removal and inactivation of biofilms is essential to ensure hygienic conditions. Currently, recommendations for disinfectant usage are based on results of efficacy testing against planktonic bacteria. There are no biofilm-specific standards for the efficacy testing of disinfectants against Salmonella. Here, we assessed three models for disinfectant efficacy testing on Salmonella Typhimurium biofilms. Achievable bacterial counts per biofilm, repeatability, and intra-laboratory reproducibility were analyzed. Biofilms of two Salmonella strains were grown on different surfaces and treated with glutaraldehyde or peracetic acid. Disinfectant efficacy was compared with results for planktonic Salmonella. All methods resulted in highly repeatable cell numbers per biofilm, with one assay showing variations of less than 1 log10 CFU in all experiments for both strains tested. Disinfectant concentrations required to inactivate biofilms were higher compared to planktonic cells. Differences were found between the biofilm methods regarding maximal achievable cell numbers, repeatability, and intra-laboratory reproducibility of results, which may be used to identify the most appropriate method in relation to application context. Developing a standardized protocol for testing disinfectant efficacy on biofilms will help identify conditions that are effective against biofilms.

3.
NPJ Biofilms Microbiomes ; 8(1): 93, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36418316

ABSTRACT

The polysaccharide Bep is essential for in vitro biofilm formation of the opportunistic pathogen Burkholderia cenocepacia. We found that the Burkholderia diffusible signaling factor (BDSF) quorum sensing receptor RpfR is a negative regulator of the bep gene cluster in B. cenocepacia. An rpfR mutant formed wrinkled colonies, whereas additional mutations in the bep genes or known bep regulators like berA and berB restored the wild-type smooth colony morphology. We found that there is a good correlation between intracellular c-di-GMP levels and bep expression when the c-di-GMP level is increased or decreased through ectopic expression of a diguanylate cyclase or a c-di-GMP phosphodiesterase, respectively. However, when the intracellular c-di-GMP level is changed by site directed mutagenesis of the EAL or GGDEF domain of RpfR there is no correlation between intracellular c-di-GMP levels and bep expression. Except for rpfR, deletion mutants of all 25 c-di-GMP phosphodiesterase and diguanylate cyclase genes encoded by B. cenocepacia showed no change to berA and bep gene expression. Moreover, bacterial two-hybrid assays provided evidence that RpfR and BerB physically interact and give specificity to the regulation of the bep genes. We suggest a model where RpfR binds BerB at low c-di-GMP levels to sequester this RpoN-dependent activator to an RpfR/RpfF complex. If the c-di-GMP levels rise, possibly by the enzymatic action of RpfR, BerB binds c-di-GMP and is released from the RpfR/RpfF complex and associates with RpoN to activate transcription of berA, and the BerA protein subsequently activates transcription of the bep genes.


Subject(s)
Burkholderia cenocepacia , Burkholderia , Burkholderia cenocepacia/genetics , Burkholderia cenocepacia/metabolism , Quorum Sensing/genetics , Phosphoric Diester Hydrolases
4.
Nanomaterials (Basel) ; 11(11)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34835763

ABSTRACT

Bacterial adhesion and biofilm formation on surfaces are associated with persistent microbial contamination, biofouling, and the emergence of resistance, thus, calling for new strategies to impede bacterial surface colonization. Using ns-UV laser treatment (wavelength 248 nm and a pulse duration of 20 ns), laser-induced periodic surface structures (LIPSS) featuring different sub-micrometric periods ranging from ~210 to ~610 nm were processed on commercial poly(ethylene terephthalate) (PET) foils. Bacterial adhesion tests revealed that these nanorippled surfaces exhibit a repellence for E. coli that decisively depends on the spatial periods of the LIPSS with the strongest reduction (~91%) in cell adhesion observed for LIPSS periods of 214 nm. Although chemical and structural analyses indicated a moderate laser-induced surface oxidation, a significant influence on the bacterial adhesion was ruled out. Scanning electron microscopy and additional biofilm studies using a pili-deficient E. coli TG1 strain revealed the role of extracellular appendages in the bacterial repellence observed here.

5.
J Mol Biol ; 432(16): 4576-4595, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32534064

ABSTRACT

In many bacteria, the biofilm-promoting second messenger c-di-GMP is produced and degraded by multiple diguanylate cyclases (DGC) and phosphodiesterases (PDE), respectively. High target specificity of some of these enzymes has led to theoretical concepts of "local" c-di-GMP signaling. In Escherichia coli K-12, which has 12 DGCs and 13 PDEs, a single DGC, DgcC, is specifically required for the biosynthesis of the biofilm exopolysaccharide pEtN-cellulose without affecting the cellular c-di-GMP pool, but the mechanistic basis of this target specificity has remained obscure. DGC activity of membrane-associated DgcC, which is demonstrated in vitro in nanodiscs, is shown to be necessary and sufficient to specifically activate cellulose biosynthesis in vivo. DgcC and a particular PDE, PdeK (encoded right next to the cellulose operon), directly interact with cellulose synthase subunit BcsB and with each other, thus establishing physical proximity between cellulose synthase and a local source and sink of c-di-GMP. This arrangement provides a localized, yet open source of c-di-GMP right next to cellulose synthase subunit BcsA, which needs allosteric activation by c-di-GMP. Through mathematical modeling and simulation, we demonstrate that BcsA binding from the low cytosolic c-di-GMP pool in E. coli is negligible, whereas a single c-di-GMP molecule that is produced and released in direct proximity to cellulose synthase increases the probability of c-di-GMP binding to BcsA several hundred-fold. This local c-di-GMP signaling could provide a blueprint for target-specific second messenger signaling also in other bacteria where multiple second messenger producing and degrading enzymes exist.


Subject(s)
Biofilms/growth & development , Cyclic GMP/analogs & derivatives , Escherichia coli K12/physiology , Escherichia coli Proteins/metabolism , Polysaccharides, Bacterial/metabolism , Cellulose/metabolism , Cyclic GMP/metabolism , Escherichia coli K12/metabolism , Glucosyltransferases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Phosphoric Diester Hydrolases/metabolism , Phosphorus-Oxygen Lyases/metabolism , Signal Transduction
6.
Front Microbiol ; 9: 3286, 2018.
Article in English | MEDLINE | ID: mdl-30687272

ABSTRACT

Burkholderia cenocepacia H111 is an opportunistic pathogen associated with chronic lung infections in cystic fibrosis patients. Biofilm formation, motility and virulence of B. cenocepacia are regulated by the second messenger cyclic di-guanosine monophosphate (c-di-GMP). In the present study, we analyzed the role of all 25 putative c-di-GMP metabolizing proteins of B. cenocepacia H111 with respect to motility, colony morphology, pellicle formation, biofilm formation, and virulence. We found that RpfR is a key regulator of c-di-GMP signaling in B. cenocepacia, affecting a broad spectrum of phenotypes under various environmental conditions. In addition, we identified Bcal2449 as a regulator of B. cenocepacia virulence in Galleria mellonella larvae. While Bcal2449 consists of protein domains that may catalyze both c-di-GMP synthesis and degradation, only the latter was essential for larvae killing, suggesting that a decreased c-di-GMP level mediated by the Bcal2449 protein is required for virulence of B. cenocepacia. Finally, our work suggests that some individual proteins play a role in regulating exclusively motility (CdpA), biofilm formation (Bcam1160) or both (Bcam2836).

7.
mBio ; 8(5)2017 10 10.
Article in English | MEDLINE | ID: mdl-29018125

ABSTRACT

The bacterial second messenger bis-(3'-5')-cyclic diguanosine monophosphate (c-di-GMP) ubiquitously promotes bacterial biofilm formation. Intracellular pools of c-di-GMP seem to be dynamically negotiated by diguanylate cyclases (DGCs, with GGDEF domains) and specific phosphodiesterases (PDEs, with EAL or HD-GYP domains). Most bacterial species possess multiple DGCs and PDEs, often with surprisingly distinct and specific output functions. One explanation for such specificity is "local" c-di-GMP signaling, which is believed to involve direct interactions between specific DGC/PDE pairs and c-di-GMP-binding effector/target systems. Here we present a systematic analysis of direct protein interactions among all 29 GGDEF/EAL domain proteins of Escherichia coli Since the effects of interactions depend on coexpression and stoichiometries, cellular levels of all GGDEF/EAL domain proteins were also quantified and found to vary dynamically along the growth cycle. Instead of detecting specific pairs of interacting DGCs and PDEs, we discovered a tightly interconnected protein network of a specific subset or "supermodule" of DGCs and PDEs with a coregulated core of five hyperconnected hub proteins. These include the DGC/PDE proteins representing the c-di-GMP switch that turns on biofilm matrix production in E. coli Mutants lacking these core hub proteins show drastic biofilm-related phenotypes but no changes in cellular c-di-GMP levels. Overall, our results provide the basis for a novel model of local c-di-GMP signaling in which a single strongly expressed master PDE, PdeH, dynamically eradicates global effects of several DGCs by strongly draining the global c-di-GMP pool and thereby restricting these DGCs to serving as local c-di-GMP sources that activate specific colocalized effector/target systems.IMPORTANCE c-di-GMP signaling in bacteria is believed to occur via changes in cellular c-di-GMP levels controlled by antagonistic and potentially interacting pairs of diguanylate cyclases (DGCs) and c-di-GMP phosphodiesterases (PDEs). Our systematic analysis of protein-protein interaction patterns of all 29 GGDEF/EAL domain proteins of E. coli, together with our measurements of cellular c-di-GMP levels, challenges both aspects of this current concept. Knocking out distinct DGCs and PDEs has drastic effects on E. coli biofilm formation without changing the cellular c-di-GMP level. In addition, rather than generally coming in interacting DGC/PDE pairs, a subset of DGCs and PDEs operates as central interaction hubs in a larger "supermodule," with other DGCs and PDEs behaving as "lonely players" without contacts to other c-di-GMP-related enzymes. On the basis of these data, we propose a novel concept of "local" c-di-GMP signaling in bacteria with multiple enzymes that make or break the second messenger c-di-GMP.


Subject(s)
Cyclic GMP/analogs & derivatives , Escherichia coli Proteins/metabolism , Escherichia coli/chemistry , Escherichia coli/genetics , Protein Domains , Bacterial Proteins/metabolism , Biofilms/growth & development , Cellulose/metabolism , Cyclic GMP/genetics , Cyclic GMP/metabolism , Escherichia coli/enzymology , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Gene Expression Regulation, Bacterial , Mutation , Phosphorus-Oxygen Lyases/metabolism , Protein Interaction Domains and Motifs , Signal Transduction
8.
Mol Microbiol ; 101(1): 136-51, 2016 07.
Article in English | MEDLINE | ID: mdl-26992034

ABSTRACT

In bacterial biofilms, which are often involved in chronic infections, cells are surrounded by a self-produced extracellular matrix that contains amyloid fibres, exopolysaccharides and other biopolymers. The matrix contributes to the pronounced resistance of biofilms against antibiotics and host immune systems. Being highly inflammatory, matrix amyloids such as curli fibres of Escherichia coli can also play a role in pathogenicity. Using macrocolony biofilms of commensal and pathogenic E. coli as a model system, we demonstrate here that the green tea polyphenol epigallocatachin gallate (EGCG) is a potent antibiofilm agent. EGCG virtually eliminates the biofilm matrix by directly interfering with the assembly of curli subunits into amyloid fibres, and by triggering the σ(E) cell envelope stress response and thereby reducing the expression of CsgD - a crucial activator of curli and cellulose biosynthesis - due to csgD mRNA targeting by the σ(E) -dependent sRNA RybB. These findings highlight EGCG as a potential adjuvant for antibiotic therapy of biofilm-associated infections. Moreover, EGCG may support therapies against pathogenic E. coli that produce inflammatory curli fibres along with Shigatoxin.


Subject(s)
Amyloid/metabolism , Biofilms/drug effects , Catechin/analogs & derivatives , Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Sigma Factor/metabolism , Trans-Activators/metabolism , Amyloid/genetics , Anti-Infective Agents , Bacterial Adhesion/physiology , Bacterial Proteins/antagonists & inhibitors , Catechin/metabolism , Catechin/pharmacology , Down-Regulation/drug effects , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/genetics , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Tea/chemistry , Trans-Activators/antagonists & inhibitors , Trans-Activators/genetics
9.
EMBO Mol Med ; 6(12): 1622-37, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25361688

ABSTRACT

In 2011, nearly 4,000 people in Germany were infected by Shiga toxin (Stx)-producing Escherichia coli O104:H4 with > 22% of patients developing haemolytic uraemic syndrome (HUS). Genome sequencing showed the outbreak strain to be related to enteroaggregative E. coli (EAEC), suggesting its high virulence results from EAEC-typical strong adherence and biofilm formation combined to Stx production. Here, we report that the outbreak strain contains a novel diguanylate cyclase (DgcX)--producing the biofilm-promoting second messenger c-di-GMP--that shows higher expression than any other known E. coli diguanylate cyclase. Unlike closely related E. coli, the outbreak strain expresses the c-di-GMP-controlled biofilm regulator CsgD and amyloid curli fibres at 37°C, but is cellulose-negative. Moreover, it constantly generates derivatives with further increased and deregulated production of CsgD and curli. Since curli fibres are strongly proinflammatory, with cellulose counteracting this effect, high c-di-GMP and curli production by the outbreak O104:H4 strain may enhance not only adherence but may also contribute to inflammation, thereby facilitating entry of Stx into the bloodstream and to the kidneys where Stx causes HUS.


Subject(s)
Biofilms , Cyclic GMP/analogs & derivatives , Escherichia coli Infections/microbiology , Hemolytic-Uremic Syndrome/microbiology , Shiga-Toxigenic Escherichia coli/physiology , Cyclic GMP/metabolism , Disease Outbreaks , Escherichia coli Infections/epidemiology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Female , Germany/epidemiology , Hemolytic-Uremic Syndrome/epidemiology , Humans , Middle Aged , Phosphorus-Oxygen Lyases/genetics , Phosphorus-Oxygen Lyases/metabolism , Shiga Toxin , Shiga-Toxigenic Escherichia coli/enzymology , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/isolation & purification
10.
J Bacteriol ; 195(24): 5540-54, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24097954

ABSTRACT

Morphological form in multicellular aggregates emerges from the interplay of genetic constitution and environmental signals. Bacterial macrocolony biofilms, which form intricate three-dimensional structures, such as large and often radially oriented ridges, concentric rings, and elaborate wrinkles, provide a unique opportunity to understand this interplay of "nature and nurture" in morphogenesis at the molecular level. Macrocolony morphology depends on self-produced extracellular matrix components. In Escherichia coli, these are stationary phase-induced amyloid curli fibers and cellulose. While the widely used "domesticated" E. coli K-12 laboratory strains are unable to generate cellulose, we could restore cellulose production and macrocolony morphology of E. coli K-12 strain W3110 by "repairing" a single chromosomal SNP in the bcs operon. Using scanning electron and fluorescence microscopy, cellulose filaments, sheets and nanocomposites with curli fibers were localized in situ at cellular resolution within the physiologically two-layered macrocolony biofilms of this "de-domesticated" strain. As an architectural element, cellulose confers cohesion and elasticity, i.e., tissue-like properties that-together with the cell-encasing curli fiber network and geometrical constraints in a growing colony-explain the formation of long and high ridges and elaborate wrinkles of wild-type macrocolonies. In contrast, a biofilm matrix consisting of the curli fiber network only is brittle and breaks into a pattern of concentric dome-shaped rings separated by deep crevices. These studies now set the stage for clarifying how regulatory networks and in particular c-di-GMP signaling operate in the three-dimensional space of highly structured and "tissue-like" bacterial biofilms.


Subject(s)
Biofilms/growth & development , Cellulose/metabolism , Escherichia coli K12/physiology , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Escherichia coli K12/genetics , Escherichia coli K12/metabolism , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Point Mutation
11.
mBio ; 4(2): e00103-13, 2013 Mar 19.
Article in English | MEDLINE | ID: mdl-23512962

ABSTRACT

UNLABELLED: Bacterial biofilms are highly structured multicellular communities whose formation involves flagella and an extracellular matrix of adhesins, amyloid fibers, and exopolysaccharides. Flagella are produced by still-dividing rod-shaped Escherichia coli cells during postexponential growth when nutrients become suboptimal. Upon entry into stationary phase, however, cells stop producing flagella, become ovoid, and generate amyloid curli fibers. These morphological changes, as well as accompanying global changes in gene expression and cellular physiology, depend on the induction of the stationary-phase sigma subunit of RNA polymerase, σ(S) (RpoS), the nucleotide second messengers cyclic AMP (cAMP), ppGpp, and cyclic-di-GMP, and a biofilm-controlling transcription factor, CsgD. Using flagella, curli fibers, a CsgD::GFP reporter, and cell morphology as "anatomical" hallmarks in fluorescence and scanning electron microscopy, different physiological zones in macrocolony biofilms of E. coli K-12 can be distinguished at cellular resolution. Small ovoid cells encased in a network of curli fibers form the outer biofilm layer. Inner regions are characterized by heterogeneous CsgD::GFP and curli expression. The bottom zone of the macrocolonies features elongated dividing cells and a tight mesh of entangled flagella, the formation of which requires flagellar motor function. Also, the cells in the outer-rim growth zone produce flagella, which wrap around and tether cells together. Adjacent to this growth zone, small chains and patches of shorter curli-surrounded cells appear side by side with flagellated curli-free cells before curli coverage finally becomes confluent, with essentially all cells in the surface layer being encased in "curli baskets." IMPORTANCE: Heterogeneity or cellular differentiation in biofilms is a commonly accepted concept, but direct evidence at the microscale has been difficult to obtain. Our study reveals the microanatomy and microphysiology of an Escherichia coli macrocolony biofilm at an unprecedented cellular resolution, with physiologically different zones and strata forming as a function of known global regulatory networks that respond to biofilm-intrinsic gradients of nutrient supply. In addition, this study identifies zones of heterogeneous and potentially bistable CsgD and curli expression, shows bacterial curli networks to strikingly resemble Alzheimer plaques, and suggests a new role of flagella as an architectural element in biofilms.


Subject(s)
Biofilms/growth & development , Escherichia coli K12/cytology , Escherichia coli K12/physiology , Gene Expression Regulation, Bacterial , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...