Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38794149

ABSTRACT

Glioblastoma (GB) is the most aggressive and common primary malignant tumor of the brain and central nervous system. Without treatment, the average patient survival time is about six months, which can be extended to fifteen months with multimodal therapies. The chemoresistance observed in GB is, in part, attributed to the presence of a subpopulation of glioblastoma-like stem cells (GSCs) that are characterized by heightened tumorigenic capacity and chemoresistance. GSCs are situated in hypoxic tumor niches, where they sustain and promote the stem-like phenotype and have also been correlated with high chemoresistance. GSCs have the particularity of generating high levels of extracellular adenosine (ADO), which causes the activation of the A3 adenosine receptor (A3AR) with a consequent increase in the expression and activity of genes related to chemoresistance. Therefore, targeting its components is a promising alternative for treating GB. This analysis determined genes that were up- and downregulated due to A3AR blockades under both normoxic and hypoxic conditions. In addition, possible candidates associated with chemoresistance that were positively regulated by hypoxia and negatively regulated by A3AR blockades in the same condition were analyzed. We detected three potential candidate genes that were regulated by the A3AR antagonist MRS1220 under hypoxic conditions: LIMD1, TRIB2, and TGFB1. Finally, the selected markers were correlated with hypoxia-inducible genes and with the expression of adenosine-producing ectonucleotidases. In conclusion, we detected that hypoxic conditions generate extensive differential gene expression in GSCs, increasing the expression of genes associated with chemoresistance. Furthermore, we observed that MRS1220 could regulate the expression of LIMD1, TRIB2, and TGFB1, which are involved in chemoresistance and correlate with a poor prognosis, hypoxia, and purinergic signaling.

2.
J Nucl Med ; 65(2): 300-305, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38164615

ABSTRACT

This study aimed to evaluate (R)-[18F]YH134 as a novel PET tracer for imaging monoacylglycerol lipase (MAGL). Considering the ubiquitous expression of MAGL throughout the whole body, the impact of various MAGL inhibitors on (R)-[18F]YH134 brain uptake and its application in brain-periphery crosstalk were explored. Methods: MAGL knockout and wild-type mice were used to evaluate (R)-[18F]YH134 in in vitro autoradiography and PET experiments. To explore the impact of peripheral MAGL occupancy on (R)-[18F]YH134 brain uptake, PET kinetics with an arterial input function were studied in male Wistar rats under baseline and blocking conditions. Results: In in vitro autoradiography, (R)-[18F]YH134 revealed a heterogeneous distribution pattern with high binding to MAGL-rich brain regions in wild-type mouse brain slices, whereas the radioactive signal was negligible in MAGL knockout mouse brain slices. The in vivo brain PET images of (R)-[18F]YH134 in wild-type and MAGL knockout mice demonstrated its high specificity and selectivity in mouse brain. A Logan plot with plasma input function was applied to estimate the distribution volume (V T) of (R)-[18F]YH134. V T was significantly reduced by a brain-penetrant MAGL inhibitor but was unchanged by a peripherally restricted MAGL inhibitor. The MAGL target occupancy in the periphery was estimated using (R)-[18F]YH134 PET imaging data from the brain. Conclusion: (R)-[18F]YH134 is a highly specific and selective PET tracer with favorable kinetic properties for imaging MAGL in rodent brain. Our results showed that blocking of the peripheral target influences brain uptake but not the V T of (R)-[18F]YH134. (R)-[18F]YH134 can be used for estimating the dose of MAGL inhibitor at half-maximal peripheral target occupancy.


Subject(s)
Monoacylglycerol Lipases , Neuroimaging , Rats , Mice , Male , Animals , Monoacylglycerol Lipases/metabolism , Rats, Wistar , Neuroimaging/methods , Brain/diagnostic imaging , Brain/metabolism , Positron-Emission Tomography/methods , Mice, Knockout , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
3.
Schmerz ; 2023 Oct 20.
Article in German | MEDLINE | ID: mdl-37864020

ABSTRACT

BACKGROUND: Multimodal pain therapy usually take place in the context of group therapy lasting several weeks and is based on a generally activating approach. Due to the specificity of stress intolerance with postexertional malaise (PEM) in patients with postviral syndromes, physical as well as psychological overload must be urgently avoided in these cases; however, these aspects can only be insufficiently considered in current medical pain therapy concepts. METHODS: Summary of the current literature and presentation of clinical characteristics as well as presentation of a model project for a multimodal pain therapy in postviral syndromes with PEM. MODEL CONCEPT: The presented model project describes a day clinic treatment setting for interdisciplinary multimodal pain therapy adapted to the individual resilience with minimization of the risk of strain-induced deterioration of the condition.

4.
Front Neurosci ; 16: 1039977, 2022.
Article in English | MEDLINE | ID: mdl-36507347

ABSTRACT

Introduction: Gestational chronodisruption impact maternal circadian rhythms, inhibiting the nocturnal increase of melatonin, a critical hormone that contributes to maternal changes adaptation, entrains circadian rhythms, and prepares the fetus for birth and successful health in adulthood. In rats, we know that gestational chronodisruption by maternal chronic photoperiod shifting (CPS) impaired maternal melatonin levels and resulted in long-term metabolic and cardiovascular effects in adult male offspring. Here, we investigated the consequences of CPS on mother and adult female offspring and explored the effects of melatonin maternal supplementation. Also, we tested whether maternal melatonin administration during gestational chronodisruption rescues maternal circadian rhythms, pregnancy outcomes, and transcriptional functions in adult female offspring. Methods: Female rats raised and maintained in photoperiod 12:12 light: dark were mated and separated into three groups: (a) Control photoperiod 12:12 (LD); (b) CPS photoperiod; and (c) CPS+Mel mothers supplemented with melatonin in the drinking water throughout gestation. In the mother, we evaluated maternal circadian rhythms by telemetry and pregnancy outcomes, in the long-term, we study adult female offspring by evaluating endocrine and inflammatory markers and the mRNA expression of functional genes involved in adrenal, cardiac, and renal function. Results: In the mothers, CPS disrupted circadian rhythms of locomotor activity, body temperature, and heart rate and increased gestational length by almost 12-h and birth weight by 12%, all of which were rescued by maternal melatonin administration. In the female offspring, we found blunted day/night differences in circulating levels of melatonin and corticosterone, abnormal patterns of pro-inflammatory cytokines Interleukin-1a (IL1a), Interleukin-6 (IL6), and Interleukin-10 (IL10); and differential expression in 18 out of 24 adrenal, cardiac, and renal mRNAs evaluated. Conclusion: Maternal melatonin contributed to maintaining the maternal circadian rhythms in mothers exposed to CPS, and the re-establishing the expression of 60% of the altered mRNAs to control levels in the female offspring. Although we did not analyze the effects on kidney, adrenal, and heart physiology, our results reinforce the idea that altered maternal circadian rhythms, resulting from exposure to light at night, should be a mechanism involved in the programming of Non-Communicable Diseases.

5.
PLoS One ; 17(9): e0268590, 2022.
Article in English | MEDLINE | ID: mdl-36084029

ABSTRACT

Chronic inflammation and blood-brain barrier dysfunction are key pathological hallmarks of neurological disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Major drivers of these pathologies include pro-inflammatory stimuli such as prostaglandins, which are produced in the central nervous system by the oxidation of arachidonic acid in a reaction catalyzed by the cyclooxygenases COX1 and COX2. Monoacylglycerol lipase hydrolyzes the endocannabinoid signaling lipid 2-arachidonyl glycerol, enhancing local pools of arachidonic acid in the brain and leading to cyclooxygenase-mediated prostaglandin production and neuroinflammation. Monoacylglycerol lipase inhibitors were recently shown to act as effective anti-inflammatory modulators, increasing 2-arachidonyl glycerol levels while reducing levels of arachidonic acid and prostaglandins, including PGE2 and PGD2. In this study, we characterized a novel, highly selective, potent and reversible monoacylglycerol lipase inhibitor (MAGLi 432) in a mouse model of lipopolysaccharide-induced blood-brain barrier permeability and in both human and mouse cells of the neurovascular unit: brain microvascular endothelial cells, pericytes and astrocytes. We confirmed the expression of monoacylglycerol lipase in specific neurovascular unit cells in vitro, with pericytes showing the highest expression level and activity. However, MAGLi 432 did not ameliorate lipopolysaccharide-induced blood-brain barrier permeability in vivo or reduce the production of pro-inflammatory cytokines in the brain. Our data confirm monoacylglycerol lipase expression in mouse and human cells of the neurovascular unit and provide the basis for further cell-specific analysis of MAGLi 432 in the context of blood-brain barrier dysfunction caused by inflammatory insults.


Subject(s)
Lipopolysaccharides , Monoacylglycerol Lipases , Animals , Arachidonic Acid/metabolism , Cyclooxygenase 2 , Endocannabinoids/metabolism , Endothelial Cells/metabolism , Enzyme Inhibitors/pharmacology , Glycerol/metabolism , Humans , Lipopolysaccharides/pharmacology , Mice , Monoacylglycerol Lipases/metabolism , Monoglycerides , Prostaglandins/metabolism
6.
Eur J Med Chem ; 243: 114750, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36137365

ABSTRACT

Monoacylglycerol lipase (MAGL) is a gatekeeper in regulating endocannabinoid signaling and has gained substantial attention as a therapeutic target for neurological disorders. We recently discovered a morpholin-3-one derivative as a novel scaffold for imaging MAGL via positron emission tomography (PET). However, its slow kinetics in vivo hampered the application. In this study, structural optimization was conducted and eleven novel MAGL inhibitors were designed and synthesized. Based on the results from MAGL inhibitory potency, in vitro metabolic stability and surface plasmon resonance assays, we identified compound 7 as a potential MAGL PET tracer candidate. [11C]7 was synthesized via direct 11CO2 fixation method and successfully mapped MAGL distribution patterns on rodent brains in in vitro autoradiography. PET studies in mice using [11C]7 demonstrated its improved kinetic profile compared to the lead structure. Its high specificity in vivo was proved by using MAGL KO mice. Although further studies confirmed that [11C]7 is a P-glycoprotein (P-gp) substrate in mice, its low P-gp efflux ratio on cells transfected with human protein suggests that it should not be an issue for the clinical translation of [11C]7 as a novel reversible MAGL PET tracer in human subjects. Overall, [11C]7 ([11C]RO7284390) showed promising results warranting further clinical evaluation.


Subject(s)
Monoacylglycerol Lipases , Tomography, X-Ray Computed , Animals , Mice , Humans , Monoacylglycerol Lipases/metabolism , Positron-Emission Tomography/methods , Brain/metabolism , Kinetics , Enzyme Inhibitors/chemistry
7.
Nucl Med Biol ; 108-109: 24-32, 2022.
Article in English | MEDLINE | ID: mdl-35248850

ABSTRACT

Monoacylglycerol lipase (MAGL) is a serine hydrolase that plays an important role in the endocannabinoid degradation in the brain. It has recently emerged as a promising therapeutic target in the treatment of neuroinflammatory and neurodegenerative diseases, such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Development of MAGL-specific radioligands for non-invasive imaging by positron-emission tomography (PET) would deepen our knowledge on the relevant pathological changes in diseased states and accelerate drug discovery. In this study, we report the selection and synthesis of two morpholine-3-one derivatives as potential reversible MAGL PET tracer candidates based on their multiparameter optimization scores. Both compounds ([11C]1, [11C]2) were radiolabeled by direct [11C]CO2 fixation and the in vitro autoradiographic studies demonstrated their specificity and selectivity towards MAGL. Dynamic PET imaging using MAGL knockout and wild-type mice confirmed the in vivo specificity of [11C]2. Our preliminary results indicate that morpholine-3-one derivative [11C]2 ([11C]RO7279991) binds to MAGL in vivo, and this molecular scaffold could serve as an alternative lead structure to image MAGL in the central nervous system.


Subject(s)
Monoacylglycerol Lipases , Positron-Emission Tomography , Animals , Brain/diagnostic imaging , Brain/metabolism , Endocannabinoids/metabolism , Enzyme Inhibitors/metabolism , Mice , Monoacylglycerol Lipases/chemistry , Monoacylglycerol Lipases/metabolism , Morpholines/metabolism , Positron-Emission Tomography/methods
8.
J Pineal Res ; 72(1): e12766, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34634151

ABSTRACT

Adopting an integrative approach, by combining studies of cardiovascular function with those at cellular and molecular levels, this study investigated whether maternal treatment with melatonin protects against programmed cardiovascular dysfunction in the offspring using an established rodent model of hypoxic pregnancy. Wistar rats were divided into normoxic (N) or hypoxic (H, 10% O2 ) pregnancy ± melatonin (M) treatment (5 µg·ml-1 .day-1 ) in the maternal drinking water. Hypoxia ± melatonin treatment was from day 15-20 of gestation (term is ca. 22 days). To control for possible effects of maternal hypoxia-induced reductions in maternal food intake, additional dams underwent pregnancy under normoxic conditions but were pair-fed (PF) to the daily amount consumed by hypoxic dams from day 15 of gestation. In one cohort of animals from each experimental group (N, NM, H, HM, PF, PFM), measurements were made at the end of gestation. In another, following delivery of the offspring, investigations were made at adulthood. In both fetal and adult offspring, fixed aorta and hearts were studied stereologically and frozen hearts were processed for molecular studies. In adult offspring, mesenteric vessels were isolated and vascular reactivity determined by in-vitro wire myography. Melatonin treatment during normoxic, hypoxic or pair-fed pregnancy elevated circulating plasma melatonin in the pregnant dam and fetus. Relative to normoxic pregnancy, hypoxic pregnancy increased fetal haematocrit, promoted asymmetric fetal growth restriction and resulted in accelerated postnatal catch-up growth. Whilst fetal offspring of hypoxic pregnancy showed aortic wall thickening, adult offspring of hypoxic pregnancy showed dilated cardiomyopathy. Similarly, whilst cardiac protein expression of eNOS was downregulated in the fetal heart, eNOS protein expression was elevated in the heart of adult offspring of hypoxic pregnancy. Adult offspring of hypoxic pregnancy further showed enhanced mesenteric vasoconstrictor reactivity to phenylephrine and the thromboxane mimetic U46619. The effects of hypoxic pregnancy on cardiovascular remodelling and function in the fetal and adult offspring were independent of hypoxia-induced reductions in maternal food intake. Conversely, the effects of hypoxic pregnancy on fetal and postanal growth were similar in pair-fed pregnancies. Whilst maternal treatment of normoxic or pair-fed pregnancies with melatonin on the offspring cardiovascular system was unremarkable, treatment of hypoxic pregnancies with melatonin in doses lower than those recommended for overcoming jet lag in humans enhanced fetal cardiac eNOS expression and prevented all alterations in cardiovascular structure and function in fetal and adult offspring. Therefore, the data support that melatonin is a potential therapeutic target for clinical intervention against developmental origins of cardiovascular dysfunction in pregnancy complicated by chronic fetal hypoxia.


Subject(s)
Melatonin , Pregnancy Complications , Animals , Female , Fetal Growth Retardation , Hypoxia , Melatonin/pharmacology , Pregnancy , Rats , Rats, Wistar
9.
Chronobiol Int ; 39(2): 269-284, 2022 02.
Article in English | MEDLINE | ID: mdl-34727788

ABSTRACT

Synchronization to periodic cues such as food/water availability and light/dark cycles is crucial for living organisms' homeostasis. Both factors have been heavily influenced by human activity, with artificial light at night (ALAN) being an evolutionary challenge imposed over roughly the last century. Evidence from studies in humans and animal models shows that overt circadian misalignment, such as that imposed to about 20% of the workforce by night shift work (NSW), negatively impinges on the internal temporal order of endocrinology, physiology, metabolism, and behavior. Moreover, NSW is often associated to mistimed feeding, with both unnatural behaviors being known to increase the risk of chronic diseases, such as eating disorders, overweight, obesity, cardiovascular, metabolic (particularly type 2 diabetes mellitus) and gastrointestinal disorders, some types of cancer, as well as mental disease including sleep disturbances, cognitive disorders, and depression. Regarding deleterious effects of ALAN on reproduction, increased risk of miscarriage, preterm delivery and low birth weight have been reported in shift-worker women. These mounting lines of evidence prompt further efforts to advance our understanding of the effects of long-term NSW on health. Emerging data suggest that NSW with or without mistimed feeding modify gene expression and functional readouts in different tissues/organs, which seem to translate into persistent cardiometabolic and endocrine dysfunction. However, this research avenue still faces multiple challenges, such as functional characterization of new experimental models more closely resembling human long-term NSW and mistimed feeding in males versus females; studying further target organs; identifying molecular changes by means of deep multi-omics analyses; and exploring biomarkers of NSW with translational medicine potential. Using high-throughput and systems biology is a relatively new approach to study NSW, aimed to generate experiments addressing new biological factors, pathways, and mechanisms, going beyond the boundaries of the circadian clock molecular machinery.


Subject(s)
Circadian Clocks , Diabetes Mellitus, Type 2 , Shift Work Schedule , Animals , Circadian Rhythm , Female , Humans , Male , Photoperiod , Shift Work Schedule/adverse effects
10.
Front Endocrinol (Lausanne) ; 12: 678468, 2021.
Article in English | MEDLINE | ID: mdl-34484111

ABSTRACT

Compelling evidence in rats support the idea that gestational chronodisruption induces major changes in maternal circadian rhythms and fetal development and that these changes impact adult life at many physiological levels. Using a model of chronic photoperiod shifting throughout gestation (CPS), in which pregnant female rats (Sprague-Dawley strain; n = 16 per group) were exposed to lighting schedule manipulation every 3-4 days reversing the photoperiod completely or light/dark photoperiod (12/12; LD), we explored in the adult rat male offspring body weight gain, glucose homeostasis, adipose tissue content, adipose tissue response to norepinephrine (NE), and adipose tissue proteomic in the basal condition with standard diet (SD) and in response to high-fat diet (HFD). In adult CPS male (100-200 days old; n = 8 per group), we found increasing body weight, under SD and adiposity. Also, we found an increased response to intraperitoneal glucose (IGTT). After 12 weeks of HFD, white adipose tissue depots in CPS offspring were increased further, and higher IGTT and lower intraperitoneal insulin tolerance response were found, despite the lack of changes in food intake. In in vitro experiments, we observed that adipose tissue (WAT and BAT) glycerol response to NE from CPS offspring was decreased, and it was completely abolished by HFD. At the proteomic level, in CPS adipose tissue, 275 proteins displayed differential expression, compared with LD animals fed with a standard diet. Interestingly, CPS offspring and LD fed with HFD showed 20 proteins in common (2 upregulated and 18 downregulated). Based on these common proteins, the IPA analysis found that two functional pathways were significantly altered by CPS: network 1 (AKT/ERK) and network 2 (TNF/IL4; data are available via ProteomeXchange with identifier PXD026315). The present data show that gestational chronodisruption induced deleterious effects in adipose tissue recruitment and function, supporting the idea that adipose tissue function was programmed in utero by gestational chronodisruption, inducing deficient metabolic responses that persist into adulthood.


Subject(s)
Adipose Tissue/metabolism , Circadian Rhythm/physiology , Glucose/metabolism , Photoperiod , Prenatal Exposure Delayed Effects/metabolism , Animals , Chronobiology Disorders/metabolism , Female , Homeostasis/physiology , Male , Pregnancy , Proteomics , Rats , Rats, Sprague-Dawley
11.
Acta Neuropathol ; 140(5): 737-764, 2020 11.
Article in English | MEDLINE | ID: mdl-32642868

ABSTRACT

Impaired neuronal proteostasis is a salient feature of many neurodegenerative diseases, highlighting alterations in the function of the endoplasmic reticulum (ER). We previously reported that targeting the transcription factor XBP1, a key mediator of the ER stress response, delays disease progression and reduces protein aggregation in various models of neurodegeneration. To identify disease modifier genes that may explain the neuroprotective effects of XBP1 deficiency, we performed gene expression profiling of brain cortex and striatum of these animals and uncovered insulin-like growth factor 2 (Igf2) as the major upregulated gene. Here, we studied the impact of IGF2 signaling on protein aggregation in models of Huntington's disease (HD) as proof of concept. Cell culture studies revealed that IGF2 treatment decreases the load of intracellular aggregates of mutant huntingtin and a polyglutamine peptide. These results were validated using induced pluripotent stem cells (iPSC)-derived medium spiny neurons from HD patients and spinocerebellar ataxia cases. The reduction in the levels of mutant huntingtin was associated with a decrease in the half-life of the intracellular protein. The decrease in the levels of abnormal protein aggregation triggered by IGF2 was independent of the activity of autophagy and the proteasome pathways, the two main routes for mutant huntingtin clearance. Conversely, IGF2 signaling enhanced the secretion of soluble mutant huntingtin species through exosomes and microvesicles involving changes in actin dynamics. Administration of IGF2 into the brain of HD mice using gene therapy led to a significant decrease in the levels of mutant huntingtin in three different animal models. Moreover, analysis of human postmortem brain tissue and blood samples from HD patients showed a reduction in IGF2 level. This study identifies IGF2 as a relevant factor deregulated in HD, operating as a disease modifier that buffers the accumulation of abnormal protein species.


Subject(s)
Huntington Disease/metabolism , Huntington Disease/pathology , Insulin-Like Growth Factor II/metabolism , Protein Aggregation, Pathological/metabolism , Animals , Humans , Insulin-Like Growth Factor II/pharmacology , Mice , Mice, Transgenic , Protein Aggregates/drug effects
12.
Front Physiol ; 10: 1377, 2019.
Article in English | MEDLINE | ID: mdl-31824324

ABSTRACT

Experimental and epidemiological studies have revealed a relationship between an adverse intrauterine environment and chronic non-communicable disease (NCD) like cardiovascular disease (CVD) in adulthood. An important risk factor for CVD is the deregulation of the fibrinolytic system particularly high levels of expression of plasminogen activator inhibitor 1 (Pai-1). Chronic exposure to altered photoperiod disrupts the circadian organization of physiology in the pregnant female, known as gestational chronodisruption, and cause long-term effects on the adult offspring's circadian physiology. The Pai-1 expression is regulated by the molecular components of the circadian system, termed clock genes. The present study aimed to evaluate the long-term effects of chronic photoperiod shifts (CPS) during pregnancy on the expression of the clock genes and the fibrinolytic system in the liver of adult male offspring. Our results using an animal model demonstrated statistically significant differences at the transcriptional level in males gestated under CPS. At 90 days of postnatal age, the liver transcript levels of the clock gene Bmal1 were downregulated, whereas Rorα, Rorγ, Nfil3, and Pai-1 were upregulated. Our data indicate that CPS during pregnancy affects gene expression in the liver of male adult progeny, showing that alteration of the photoperiod in the mother's environment leads to persistent effects in the offspring. In conclusion, these results reveal for the first time the long-term effects of gestational chronodisruption on the transcriptional activity of one well-established risk factor associated with CVD in the adult male offspring.

13.
Cells ; 8(11)2019 10 30.
Article in English | MEDLINE | ID: mdl-31671624

ABSTRACT

Glioblastoma is the brain tumor with the worst prognosis. This is mainly due to a cell subpopulation with an extremely aggressive potential, called glioblastoma stem-like cells (GSCs). These cells produce high levels of extracellular adenosine, which are increased even more under hypoxic conditions. Under hypoxia, adenosine signaling is related to HIF-2α expression, enhancing cell aggressiveness. Adenosine can be degraded using recombinant adenosine deaminase (ADA) to revert its pathological effects. The aim of this study was to degrade adenosine using ADA in order to decrease malignancy of GSCs. Adenosine depletion was performed using recombinant ADA. Migration and invasion were measured by transwell and matrigel-coated transwell assay, respectively. HIF-2α-dependent cell migration/invasion decreased in GSCs treated with ADA under hypoxia. MRPs-mediated chemoresistance and colony formation decreased in treatment with ADA. In conclusion, adenosine depletion using adenosine deaminase decreases GSCs aggressiveness.


Subject(s)
Adenosine/deficiency , Brain Neoplasms/pathology , Cell Movement , Cell Proliferation , Drug Resistance, Neoplasm , Glioblastoma/pathology , Neoplastic Stem Cells/pathology , Adenosine/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis , Basic Helix-Loop-Helix Transcription Factors/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cell Adhesion , Glioblastoma/drug therapy , Glioblastoma/metabolism , Humans , Hypoxia , Neoplasm Invasiveness , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Tumor Cells, Cultured , Vincristine/pharmacology
15.
Work ; 63(3): 447-456, 2019.
Article in English | MEDLINE | ID: mdl-31256101

ABSTRACT

Mobile technology has revolutionised how we work. It is now relatively easy to work anywhere and anytime, but this has placed the onus is on mobile (or flexible) workers to set up their own work environment for comfort and ease of use. Vision is an important driver of posture, and hence visual ergonomics principles are integral for setting up digital devices. If mobile workers do not have visual ergonomics knowledge, or are unable to apply visual ergonomics knowledge to appropriately set up their work environment, then they are at risk of developing visual-related occupational health issues due to exposure to adverse physical work environments. To address this potential health care issue, we propose the introduction of Visual Ergonomics Health Literacy. This would provide mobile workers (including school children) with the knowledge and skills to set up their work environment for comfort and ease of use, wherever they work. It is important to address this issue now before we have a widespread epidemic of discomfort and injury from not applying sound visual ergonomics principles to work environments.


Subject(s)
Ergonomics/standards , Health Literacy/methods , User-Computer Interface , Ergonomics/methods , Humans , Workplace/standards
16.
J Pharmacol Toxicol Methods ; 99: 106609, 2019.
Article in English | MEDLINE | ID: mdl-31284073

ABSTRACT

BACKGROUND: Several factors contribute to the development failure of novel pharmaceuticals, one of the most important being adverse effects in pre-clinical and clinical studies. Early identification of off-target compound activity can reduce safety-related attrition in development. In vitro profiling of drug candidates against a broad range of targets is an important part of the compound selection process. Many compounds are synthesized during early drug discovery, making it necessary to assess poly-pharmacology at a limited number of targets. This paper describes how a rational, statistical-ranking approach was used to generate a cost-effective, optimized panel of assays that allows selectivity focused structure-activity relationships to be explored for many molecules. This panel of 50 targets has been used to routinely screen Roche small molecules generated across a diverse range of therapeutic targets. Target hit rates from the Bioprint® database and internal Roche compounds are discussed. We further describe an example of how this panel was used within an anti-infective project to reduce in vivo testing. METHOD: To select the optimized panel of targets, IC50 values of compounds in the BioPrint® database were used to identify assay "hits" i.e. IC50 ≤ 1 µM in 123 different in vitro pharmacological assays. If groups of compounds hit the same targets, the target with the higher hit rate was selected, while others were considered redundant. Using a step-wise analysis, an assay panel was identified to maximize diversity and minimize redundancy. Over a five-year period, this panel of 50 off-targets was used to screen ≈1200 compounds synthesized for Roche drug discovery programs. Compounds were initially tested at 10 µM and hit rates generated are reported. Within one project, the number of hits was used to refine the choice of compounds being assessed in vivo. RESULTS: 95% of compounds from the BioPrint® panel were identified within the top 47-ranked assays. Based on this analytical approach and the addition of three targets with established safety concerns, a Roche panel was created for external screening. hERG is screened internally and not included in this analysis. Screening at 10 µM in the Roche panel identified that adenosine A3 and 5HT2B receptors had the highest hit rates (~30%), with 50% of the targets having a hit rate of ≤4%. An anti-infective program identified that a high number of hits in the Roche panel was associated with mortality in 19 mouse tolerability studies. To reduce the severity and number of such studies, future compound selections integrated the panel hit score into the selection process for in vivo studies. It was identified that compounds which hit less targets in the panel and had free plasma exposures of ~2 µM were generally better tolerated. DISCUSSION: This paper describes how an optimized panel of 50 assays was selected on the basis of hit similarity at 123 targets. This reduced panel, provides a cost-effective screening panel for assessing compound promiscuity, whilst also including many safety-relevant targets. Frequent use of the panel in early drug discovery has provided promiscuity and safety-relevant information to inform pre-clinical drug development at Roche.

17.
Article in English | MEDLINE | ID: mdl-31244775

ABSTRACT

Adverse prenatal conditions are known to impose significant trade-offs impinging on health and disease balance during adult life. Among several deleterious factors associated with complicated pregnancy, alteration of the gestational photoperiod remains largely unknown. Previously, we reported that prenatal manipulation of the photoperiod has adverse effects on the mother, fetus, and adult offspring; including cardiac hypertrophy. Here, we investigated whether chronic photoperiod shifting (CPS) during gestation may program adult renal function and blood pressure regulation. To this end, pregnant rats were subjected to CPS throughout pregnancy to evaluate the renal effects on the fetus and adult offspring. In the kidney at 18 days of gestation, both clock and clock-controlled gene expression did not display a daily pattern, although there were recurrent weaves of transcriptional activity along the 24 h in the control group. Using DNA microarray, significant differential expression was found for 1,703 transcripts in CPS relative to control fetal kidney (835 up-regulated and 868 down-regulated). Functional genomics assessment revealed alteration of diverse gene networks in the CPS fetal kidney, including regulation of transcription, aldosterone-regulated Na+ reabsorption and connective tissue differentiation. In adult offspring at 90 days of age, circulating proinflammatory cytokines IL-1ß and IL-6 were increased under CPS conditions. In these individuals, CPS did not modify kidney clock gene expression but had effects on different genes with specific functions in the nephron. Next, we evaluated several renal markers and the response of blood pressure to 4%NaCl in the diet for 4 weeks (i.e., at 150 days of age). CPS animals displayed elevated systolic blood pressure in basal conditions that remained elevated in response to 4%NaCl, relative to control conditions. At this age, CPS modified the expression of Nhe3, Ncc, Atp1a1, Nr3c1 (glucocorticoid receptor), and Nr3c2 (mineralocorticoid receptor); while Nkcc, Col3A1, and Opn were modified in the CPS 4%+NaCl group. Furthermore, CPS decreased protein expression of Kallikrein and COX-2, both involved in sodium handling. In conclusion, gestational chronodisruption programs kidney dysfunction at different levels, conceivably underlying the prehypertensive phenotype observed in the adult CPS offspring.

18.
Biochim Biophys Acta Mol Cell Res ; 1866(11): 118474, 2019 11.
Article in English | MEDLINE | ID: mdl-30954571

ABSTRACT

Discoidin domain receptor1 (DDR1) is a collagen activated receptor tyrosine kinase and an attractive anti-fibrotic target. Its expression is mainly limited to epithelial cells located in several organs including skin, kidney, liver and lung. DDR1's biology is elusive, with unknown downstream activation pathways; however, it may act as a mediator of the stromal-epithelial interaction, potentially controlling the activation state of the resident quiescent fibroblasts. Increased expression of DDR1 has been documented in several types of cancer and fibrotic conditions including skin hypertrophic scars, idiopathic pulmonary fibrosis, cirrhotic liver and renal fibrosis. The present review article focuses on: a) detailing the evidence for a role of DDR1 as an anti-fibrotic target in different organs, b) clarifying DDR1 tissue distribution in healthy and diseased tissues as well as c) exploring DDR1 protective mode of action based on literature evidence and co-authors experience; d) detailing pharmacological efforts attempted to drug this subtle anti-fibrotic target to date.


Subject(s)
Discoidin Domain Receptor 1/drug effects , Discoidin Domain Receptor 1/metabolism , Fibrosis/metabolism , Animals , Atherosclerosis/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis/drug therapy , Humans , Kidney/metabolism , Kidney/pathology , Liver/metabolism , Liver/pathology , Lung/metabolism , Lung/pathology , Mice , Neoplasms/metabolism , Nephritis, Interstitial/pathology , Plasma Cells , Receptor Protein-Tyrosine Kinases , Skin/metabolism , Skin/pathology , Vascular Diseases/metabolism , Wound Healing
19.
Clin Exp Optom ; 102(1): 63-69, 2019 01.
Article in English | MEDLINE | ID: mdl-29938826

ABSTRACT

BACKGROUND: Visual impairment is globally among the most prevalent disabilities. Research concerning the health consequences of visual deficits is challenged by confounding effects of age, because visual impairment becomes more prevalent with age. This study investigates the influence of visual deficits on visual, musculoskeletal and balance symptoms in adults with and without visual impairment, while controlling for age effects. METHODS: Thirty-nine patients with visual impairment, aged 18-72 years, were compared to 37 age-matched controls with normal vision, allocated to two age groups: < 45 and ≥ 45 years. Self-reported symptoms were measured using the Visual, Musculoskeletal and Balance Symptoms Questionnaire and compared with demographic and optometric variables. RESULTS: In total, patients with visual impairment reported more symptoms than age-matched normally sighted controls. Younger adults in the control group were almost free from symptoms, whereas younger adults with visual impairment reported levels of symptoms equal to older adults with visual impairment. Multiple logistic regression modelling identified use of eyeglasses, magnifying aids and presence of anisometropia to be the most influential risk factors for reporting visual, musculoskeletal and balance symptoms, with accentuated influence on balance symptoms. CONCLUSIONS: People with visual impairments and people with age-related normal visual deficits are both predisposed to report visual, musculoskeletal and balance symptoms relative to people without visual defects or need for eye-wear correction. Age-related variations in symptoms were observed in the control groups but not in the visual impairment groups, with younger visual impairment patients reporting as many symptoms as older visual impairment patients. These findings indicate a need for a wider interdisciplinary perspective on eye care concerning people with visual impairment and people with need for habitual daily use of eye wear correction.


Subject(s)
Musculoskeletal Diseases/physiopathology , Postural Balance/physiology , Sensation Disorders/physiopathology , Vision Disorders/physiopathology , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Musculoskeletal Diseases/diagnosis , Prevalence , Risk Factors , Sensation Disorders/diagnosis , Surveys and Questionnaires , Vision Disorders/diagnosis , Vision Disorders/therapy , Visual Acuity/physiology , Visually Impaired Persons , Young Adult
20.
Eur J Appl Physiol ; 119(2): 389-397, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30430279

ABSTRACT

The present study aimed to identify whether or not an increase in ciliary-muscle contraction force, when the eye-lens is adjusted for viewing at a near distance, results in an increase in trapezius muscle activity, while performing a natural work task. Twelve participants, ranging in age from 21 to 32 years, performed a computer-mouse work task during free gaze conditions. A moving visual target was tracked with a computer mouse on a screen placed at two different distances from the eyes, 25 cm and 50 cm. Tracking performance, eye accommodation, and bilateral trapezius muscle activity were measured continuously. Ciliary-muscle contraction force was computed according to a formula which takes into account the age-dependent, non-linear relationship between the contraction force of the ciliary muscle and the produced level of eye accommodation. Generalized estimating equations analyses were performed. On the dominant hand side and for the nearest screen distance, there was a significant effect of ciliary-muscle contraction force on the trapezius muscle activity (p < 0.001). No other effects were significant (p > 0.05). The results support the hypothesis that high visual demands, during computer mouse work, increase ciliary muscle contraction force and contribute to a raise of the sustained level of trapezius muscle activity. The current study specifically clarifies the validity of the relationship between ciliary-muscle contraction force and trapezius muscle activity and demonstrates that this relationship is not due to a general personality trait. We conclude that a high level of ciliary muscle contraction force can contribute to a development of musculoskeletal complaints in the neck-shoulder area.


Subject(s)
Movement/physiology , Muscle Contraction/physiology , Superficial Back Muscles/physiology , Accommodation, Ocular/physiology , Adult , Computers , Female , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...