Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 256
Filter
1.
J Phys Condens Matter ; 36(39)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38697131

ABSTRACT

In the last decade, graphene has become an exciting platform for electron optical experiments, in some aspects superior to conventional two-dimensional electron gases (2DEGs). A major advantage, besides the ultra-large mobilities, is the fine control over the electrostatics, which gives the possibility of realising gap-less and compact p-n interfaces with high precision. The latter host non-trivial states,e.g., snake states in moderate magnetic fields, and serve as building blocks of complex electron interferometers. Thanks to the Dirac spectrum and its non-trivial Berry phase, the internal (valley and sublattice) degrees of freedom, and the possibility to tailor the band structure using proximity effects, such interferometers open up a completely new playground based on novel device architectures. In this review, we introduce the theoretical background of graphene electron optics, fabrication methods used to realise electron-optical devices, and techniques for corresponding numerical simulations. Based on this, we give a comprehensive review of ballistic transport experiments and simple building blocks of electron optical devices both in single and bilayer graphene, highlighting the novel physics that is brought in compared to conventional 2DEGs. After describing the different magnetic field regimes in graphene p-n junctions and nanostructures, we conclude by discussing the state of the art in graphene-based Mach-Zender and Fabry-Perot interferometers.

2.
Eur J Pharm Biopharm ; 200: 114340, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797222

ABSTRACT

Lentiviral vectors (LVVs) are used as a starting material to generate chimeric antigen receptor (CAR) T cells. Therefore, LVVs need to be carefully analyzed to ensure safety, quality, and potency of the final product. We evaluated orthogonal and complementary analytical techniques for their suitability to characterize particulate matter (impurities and LVVs) in pharmaceutical LVV materials at development stage derived from suspension and adherent manufacturing processes. Microfluidic resistive pulse sensing (MRPS) with additional manual data fitting enabled the assessment of mode diameters for particles in the expected LVV size range in material from adherent production. LVV material from a suspension process, however, contained substantial amounts of particulate impurities which blocked MRPS cartridges. Sedimentation-velocity analytical ultracentrifugation (SV-AUC) resolved the LVV peak in material from adherent production well, whereas in more polydisperse samples from suspension production, presence of particulate impurities masked a potential signal assignable to LVVs. In interferometric light microscopy (ILM) and nanoparticle tracking analysis (NTA), lower size detection limits close to âˆ¼ 70 nm resulted in an apparent peak in particle size distributions at the expected size for LVVs emphasizing the need to interpret these data with care. Interpretation of data from dynamic light scattering (DLS) was limited by insufficient size resolution and sample polydispersity. In conclusion, the analysis of LVV products manufactured at pharmaceutical scale with current state-of-the-art physical (nano)particle characterization techniques was challenging due to the presence of particulate impurities of heterogeneous size. Among the evaluated techniques, MRPS and SV-AUC were most promising yielding acceptable results at least for material from adherent production.


Subject(s)
Genetic Vectors , Lentivirus , Nanoparticles , Particle Size , Ultracentrifugation , Lentivirus/genetics , Nanoparticles/chemistry , Ultracentrifugation/methods , Humans , Receptors, Chimeric Antigen
3.
Phys Rev E ; 108(4-1): 044202, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37978592

ABSTRACT

One major objective of controlling classical chaotic dynamical systems is exploiting the system's extreme sensitivity to initial conditions in order to arrive at a predetermined target state. In a recent Letter [Phys. Rev. Lett. 130, 020201 (2023)0031-900710.1103/PhysRevLett.130.020201], a generalization of this targeting method to quantum systems was demonstrated using successive unitary transformations that counter the natural spreading of a quantum state. In this paper further details are given and an important quite general extension is established. In particular, an alternate approach to constructing the coherent control dynamics is given, which introduces a time-dependent, locally stable control Hamiltonian that continues to use the chaotic heteroclinic orbits previously introduced, but without the need of countering quantum state spreading. Implementing that extension for the quantum kicked rotor generates a much simpler approximate control technique than discussed in the Letter, which is a little less accurate, but far more easily realizable in experiments. The simpler method's error can still be made to vanish as ℏ→0.

4.
Phytopathology ; 113(12): 2222-2229, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37856693

ABSTRACT

Several fire blight resistance loci in Malus genotypes map on different linkage groups (LGs) representing chromosomes of the domesticated apple. Prior genetics studies primarily focused on F1 populations. A strong resistance quantitative trait locus (QTL) explained up to 66% of phenotypic variance in an F1 progeny derived from crossing the highly resistant wild apple genotype Malus fusca MAL0045 and the highly susceptible apple cultivar 'Idared', which was previously mapped on LG10 (Mfu10) of MAL0045. Strains of the causative bacterial pathogen Erwinia amylovora, notably those that show a single nucleotide polymorphism in the avrRpt2EA effector protein sequence at position 156 (e.g., Ea3049), are more virulent and overcome some known fire blight resistance donors and their QTLs. However, MAL0045 is resistant to Ea3049 and Mfu10 is not overcome, but most of the F1 progeny were highly susceptible to this strain. This phenomenon led to the assumption that other putative resistance factors not segregating in the F1 progeny might be present in the genome of MAL0045. Here, we crossed F1 progeny together to obtain 135 F2 individuals. Facilitated by genotyping-by-sequencing and phenotypic assessments, we identified and mapped two novel resistance QTLs in these F2 individuals on LGs 4 and 15, which were not identified in the F1. To our knowledge, these are the first resistance QTLs mapped in F2 progeny in Malus. In addition, we report that neither MAL0045 nor Mfu10 is broken down by a highly aggressive U.S. strain, LA635, after analyses in the original F1 individuals. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Erwinia amylovora , Malus , Humans , Quantitative Trait Loci/genetics , Malus/genetics , Malus/microbiology , Plant Diseases/microbiology , Chromosome Mapping , Genotype , Erwinia amylovora/genetics
5.
Phys Rev E ; 108(2-1): 024216, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37723671

ABSTRACT

Fast scrambling of quantum correlations, reflected by the exponential growth of out-of-time-order correlators (OTOCs) on short pre-Ehrenfest time scales, is commonly considered as a major quantum signature of unstable dynamics in quantum systems with a classical limit. In two recent works [Phys. Rev. Lett. 123, 160401 (2019)0031-900710.1103/PhysRevLett.123.160401] and [Phys. Rev. Lett. 124, 140602 (2020)10.1103/PhysRevLett.124.140602], a significant difference in the scrambling rate of integrable (many-body) systems was observed, depending on the initial state being semiclassically localized around unstable fixed points or fully delocalized (infinite temperature). Specifically, the quantum Lyapunov exponent λ_{q} quantifying the OTOC growth is given, respectively, by λ_{q}=2λ_{s} or λ_{q}=λ_{s} in terms of the stability exponent λ_{s} of the hyperbolic fixed point. Here we show that a wave packet, initially localized around this fixed point, features a distinct dynamical transition between these two regions. We present an analytical semiclassical approach providing a physical picture of this phenomenon, and support our findings by extensive numerical simulations in the whole parameter range of locally unstable dynamics of a Bose-Hubbard dimer. Our results suggest that the existence of this crossover is a hallmark of unstable separatrix dynamics in integrable systems, thus opening the possibility to distinguish the latter, on the basis of this particular observable, from genuine chaotic dynamics generally featuring uniform exponential growth of the OTOC.

6.
Phys Rev Lett ; 130(25): 250402, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37418734

ABSTRACT

The notion of many-body quantum scars is associated with special eigenstates, usually concentrated in certain parts of Hilbert space, that give rise to robust persistent oscillations in a regime that globally exhibits thermalization. Here we extend these studies to many-body systems possessing a true classical limit characterized by a high-dimensional chaotic phase space, which are not subject to any particular dynamical constraint. We demonstrate genuine quantum scarring of wave functions concentrated in the vicinity of unstable classical periodic mean-field modes in the paradigmatic Bose-Hubbard model. These peculiar quantum many-body states exhibit distinct phase-space localization about those classical modes. Their existence is consistent with Heller's scar criterion and appears to persist in the thermodynamic long-lattice limit. Launching quantum wave packets along such scars leads to observable long-lasting oscillations, featuring periods that scale asymptotically with classical Lyapunov exponents, and displaying intrinsic irregularities that reflect the underlying chaotic dynamics, as opposed to regular tunnel oscillations.


Subject(s)
Cicatrix , Humans , Thermodynamics
7.
Eur J Pharm Biopharm ; 189: 68-83, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37196871

ABSTRACT

Development and manufacturing adeno-associated virus (AAV)-based vectors for gene therapy requires suitable analytical methods to assess the quality of the formulations during development, as well as the quality of different batches and the consistency of the processes. Here, we compare biophysical methods to characterize purity and DNA content of viral capsids from five different serotypes (AAV2, AAV5, AAV6, AAV8, and AAV9). For this purpose, we apply multiwavelength sedimentation velocity analytical ultracentrifugation (SV-AUC) to obtain the species' contents and to derive the wavelength-specific correction factors for the respective insert-size. In an orthogonal manner we perform anion exchange chromatography (AEX) and UV-spectroscopy and the three methods yield comparable results on empty/filled capsid contents with these correction factors. Whereas AEX and UV-spectroscopy can quantify empty and filled AAVs, only SV-AUC could identify the low amounts of partially filled capsids present in the samples used in this study. Finally, we employ negative-staining transmission electron microscopy and mass photometry to support the empty/filled ratios with methods that classify individual capsids. The obtained ratios are consistent throughout the orthogonal approaches as long as no other impurities and aggregates are present. Our results show that the combination of selected orthogonal methods can deliver consistent empty/filled contents on non-standard genome sizes, as well as information on other relevant critical quality attributes, such as AAV capsid concentration, genome concentration, insert size length and sample purity to characterize and compare AAV preparations.


Subject(s)
Capsid , Dependovirus , Dependovirus/genetics , Dependovirus/chemistry , Genetic Vectors , Capsid Proteins , Ultracentrifugation , DNA
9.
Anal Chem ; 95(22): 8478-8486, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37219094

ABSTRACT

After decades of research, gene therapy products have reached market maturity in recent years. Recombinant adeno-associated viruses (rAAVs) are one of the most promising gene delivery vehicles and are currently under intense scientific investigation. These next-generation medicines remain very challenging when it comes to designing appropriate analytical techniques for quality control. One critical quality attribute is the integrity of ssDNA incorporated in these vectors. The genome is the active compound driving rAAV therapy and therefore requires proper assessment and quality control. Current techniques for rAAV genome characterization include next-generation sequencing, quantitative polymerase chain reaction, analytical ultracentrifugation (AUC), and capillary gel electrophoresis (CGE), yet each of them presents their limitations or lack of user-friendliness. In this work, we demonstrate for the first time the potential of ion pairing-reverse phase-liquid chromatography (IP-RP-LC) to characterize the integrity of rAAV genomes. The obtained results were supported by two orthogonal techniques, AUC and CGE. IP-RP-LC can be performed above DNA melting temperatures, avoiding the detection of secondary DNA isoforms, and does not require the use of dyes due to UV detection. We demonstrate that this technique is suitable for batch comparability, different rAAV serotypes (AAV2 and AAV8), internal vs external (inside vs outside the capsid) DNA analysis, and contaminated samples. Overall, it is exceptionally user-friendly, needs limited sample preparation, has high reproducibility, and permits fractionation for further peak characterization. All of these factors add significant value of IP-RP-LC to the analytical toolbox of rAAV genome assessment.


Subject(s)
Gene Transfer Techniques , Genetic Vectors , Reproducibility of Results , Genetic Therapy , Chromatography, Liquid , Dependovirus/genetics
10.
Rapid Commun Mass Spectrom ; 37(13): e9508, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37072155

ABSTRACT

RATIONALE: Boron isotopes are a powerful tool for pH reconstruction in marine carbonates and as a tracer for fluid-mineral interaction in geochemistry. Microanalytical approaches based on laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) often suffer from effects induced by the sample matrix. In this study, we investigate matrix-independent analyses of B isotopic ratios and apply this technique to cold-water corals. METHODS: We employ a customized 193 nm femtosecond laser ablation system (Solstice, Spectra-Physics) coupled to a MC-ICP-MS system (Nu Plasma II, Nu Instruments) equipped with electron multipliers for in situ measurements of B isotopic ratios (11 B/10 B) at the micrometric scale. We analyzed various reference materials of silicate and carbonate matrices using non-matrix matched calibration without employing any correction. This approach was then applied to investigate defined increments in coral samples from a Chilean fjord. RESULTS: We obtained accurate B isotopic ratios with a reproducibility of ±0.9‰ (2 SD) for various reference materials including silicate glasses (GOR132-G, StHs6/80-G, ATHO-G and NIST SRM 612), clay (IAEA-B-8) and carbonate (JCp-1) using the silicate glass NIST SRM 610 as calibration standard, which shows that neither laser-induced nor ICP-related matrix effects are detectable. The application to cold-water corals (Desmophyllum dianthus) reveals minor intra-skeleton variations in δ11 B with average values between 23.01‰ and 25.86‰. CONCLUSIONS: Our instrumental set-up provides accurate and precise B isotopic ratios independently of the sample matrix at the micrometric scale. This approach opens a wide field of application in geochemistry, including pH reconstruction in biogenic carbonates and deciphering processes related to fluid-mineral interaction.


Subject(s)
Anthozoa , Dianthus , Laser Therapy , Animals , Boron/analysis , Mass Spectrometry/methods , Anthozoa/chemistry , Reproducibility of Results , Isotopes/analysis , Carbonates/analysis , Lasers , Silicates
11.
Phys Rev Lett ; 130(2): 020201, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36706382

ABSTRACT

One of the principal goals of controlling classical chaotic dynamical systems is known as targeting, which is the very weakly perturbative process of using the system's extreme sensitivity to initial conditions in order to arrive at a predetermined target state. It is shown that a generalization to chaotic quantum systems is possible in the semiclassical regime, but requires tailored perturbations whose effects must undo the dynamical spreading of the evolving quantum state. The procedure described here is applied to initially minimum uncertainty wave packets in the quantum kicked rotor, a preeminent quantum chaotic paradigm, to illustrate the method, and investigate its accuracy. The method's error can be made to vanish as ℏ→0.

12.
Eur J Pharm Biopharm ; 182: 152-156, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36410586

ABSTRACT

During the SARS-CoV2 pandemic mRNA vaccines in the form of lipid nanoparticles (LNPs) containing the mRNA, have set the stage for a new area of vaccines. Analytical methods to quantify changes in size and structure of LNPs are crucial, as changes in these parameters could have implications for potency. We investigated the application of sedimentation velocity analytical ultracentrifugation (SV-AUC) as quantitative stability-indicating method to detect structural changes of mRNA-LNP vaccines upon relevant stress factors (freeze/thaw, heat and mechanical stress), in comparison to qualitative dynamic light scattering (DLS) analysis. DLS was capable to qualitatively determine size and homogeneity of mRNA-LNPs with sufficient precision. Stress factors, in particular freeze/thaw and mechanical stress, led to increased particle size and content of larger species in DLS and SV-AUC. Changes upon heat stress at 50 °C were only detected as increased flotation rates by SV-AUC. In addition, SV-AUC was able to observe changes in particle density, which cannot be detected by DLS. In conclusion, SV-AUC can be used as a highly valuable quantitative stability-indicating method for characterization of LNPs.


Subject(s)
COVID-19 , Nanoparticles , Humans , RNA, Messenger , Area Under Curve , RNA, Viral , SARS-CoV-2 , Nanoparticles/chemistry , Ultracentrifugation/methods
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2506-2509, 2022 07.
Article in English | MEDLINE | ID: mdl-36086354

ABSTRACT

For correct setting and control of imaging during image-guided Magnetic Resonance (MR) procedures (e.g. changing the slice orientation), the radiologist currently depends heavily on the assistants in the control room. The communication between the surgeon and the assistant is difficult due to acoustic noise generated by the MR gradients. The development for a dedicated interventional interaction device is addressed in this work, which includes the development and evaluation of a sterile, MR-compatible capacitive gesture controller. The gesture controller consists of a surgical drape with four capacitive sensors, that are made of conductive fabric. These sensors are based on the principle of electrical capacitance between isolated conductive structures. Measurements of these capacitances are exploited to calculate the distance of a hand to one of the sensors. By comparing the distances of the hand to each sensor, simple swipe gestures can be detected. The sensor unit is connected to a micro-controller, which allows direct and fast processing of the incoming data. To evaluate the prototype, a user study with 25 participants took place. Each user had to perform the four swiping gestures and the hold gesture in a specific order. The gesture controller is capable of registering five different gestures (left-right, right-left, up-down, down-up, hold). A survey of the second prototype showed, that in 92,4% of cases, the correct gesture was registered. Clinical relevance This interaction device allows the practicing physician to manipulate the imaging independently and in a sterile manner, thus enabling a significant improvement in work-flow.


Subject(s)
Gestures , User-Computer Interface , Hand , Humans , Magnetic Resonance Imaging/methods
14.
Sci Rep ; 12(1): 8984, 2022 05 28.
Article in English | MEDLINE | ID: mdl-35643773

ABSTRACT

The protein HSF-1 is the controlling transcription factor of the heat-shock response (HSR). Its binding to the heat-shock elements (HSEs) induces the strong upregulation of conserved heat-shock proteins, including Hsp70s, Hsp40s and small HSPs. Next to these commonly known HSPs, more than 4000 other HSEs are found in the promoter regions of C. elegans genes. In microarray experiments, few of the HSE-containing genes are specifically upregulated during the heat-shock response. Most of the 4000 HSE-containing genes instead are unaffected by elevated temperatures and coexpress with genes unrelated to the HSR. This is also the case for several genes related to the HSP chaperone system, like dnj-12, dnj-13, and hsp-1. Interestingly, several promoters of the dedicated HSR-genes, like F44E5.4p, hsp-16.48p or hsp-16.2p, contain extended HSEs in their promoter region, composed of four or five HSE-elements instead of the common trimeric HSEs. We here aim at understanding how HSF-1 interacts with the different promoter regions. To this end we purify the nematode HSF-1 DBD and investigate the interaction with DNA sequences containing these regions. EMSA assays suggest that the HSF-1 DBD interacts with most of these HSE-containing dsDNAs, but with different characteristics. We employ sedimentation analytical ultracentrifugation (SV-AUC) to determine stoichiometry, affinity, and cooperativity of HSF-1 DBD binding to these HSEs. Interestingly, most HSEs show cooperative binding of the HSF-1 DBD with up to five DBDs being bound. In most cases binding to the HSEs of inducible promoters is stronger, even though the consensus scores are not always higher. The observed high affinity of HSF-1 DBD to the non-inducible HSEs of dnj-12, suggests that constitutive expression may be supported from some promoter regions, a fact that is evident for this transcription factor, that is essential also under non-stress conditions.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Consensus , DNA , HSP70 Heat-Shock Proteins/genetics , Heat-Shock Response/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
15.
Fungal Biol Biotechnol ; 9(1): 10, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35606847

ABSTRACT

BACKGROUND: The mechanical drying of wood chips is an innovative method that improves the heating value of sawmill by-products in an energy-efficient continuous process. The liquid that comes out of the wood chips as press water (PW), however, contains a variety of undissolved as well as dissolved organic substances. The disposal of the PW as wastewater would generate additional costs due to its high organic load, offsetting the benefits in energy costs associated with the enhanced heating value of the wood chips. Our research explored if the organic load in PW could be utilized as a substrate by cellulolytic filamentous fungi. Hence, using the industrially relevant Ascomycete Trichoderma reesei RUT-C30 as well as several Basidiomycete wood-rotting fungi, we examined the potential of press water obtained from Douglas-fir wood chips to be used in the growth and enzyme production media. RESULTS: The addition of PW supernatant to liquid cultures of T. reesei RUT-C30 resulted in a significant enhancement of the endoglucanase and endoxylanase activities with a substantially shortened lag-phase. A partial replacement of Ca2+, Mg2+, K+, as well as a complete replacement of Fe2+, Mn2+, Zn2+ by supplementing PW of the liquid media was achieved without negative effects on enzyme production. Concentrations of PW above 50% showed no adverse effects regarding the achievable endoglucanase activity but affected the endoxylanase activity to some extent. Exploring the enhancing potential of several individual PW components after chemical analysis revealed that the observed lag-phase reduction of T. reesei RUT-C30 was not caused by the dissolved sugars and ions, nor the wood particles in the PW sediment, suggesting that other, so far non-identified, compounds are responsible. However, also the growth rate of several basidiomycetes was significantly enhanced by the supplementation of raw PW to the agar medium. Moreover, their cultivation in liquid cultures reduced the turbidity of the PW substantially. CONCLUSIONS: PW was identified as a suitable media supplement for lignocellulolytic fungi, including the cellulase and xylanase producer T. reesei RUT-C30 and several wood-degrading basidiomycetes. The possibility to replace several minerals, trace elements and an equal volume of fresh water in liquid media with PW and the ability of fungal mycelia to filter out the suspended solids is a promising way to combine biological wastewater treatment with value-adding biotechnological applications.

16.
Front Cell Dev Biol ; 9: 774985, 2021.
Article in English | MEDLINE | ID: mdl-34869375

ABSTRACT

Besides their role as a storage for neutral lipids and sterols, there is increasing evidence that lipid droplets (LDs) are involved in cellular detoxification. LDs are in close contact to a broad variety of organelles where protein- and lipid exchange is mediated. Mitochondria as a main driver of the aging process produce reactive oxygen species (ROS), which damage several cellular components. LDs as highly dynamic organelles mediate a potent detoxification mechanism by taking up toxic lipids and proteins. A stimulation of LDs induced by the simultaneously overexpression of Lro1p and Dga1p (both encoding acyltransferases) prolongs the chronological as well as the replicative lifespan of yeast cells. The increased number of LDs reduces mitochondrial fragmentation as well as mitochondrial ROS production, both phenotypes that are signs of aging. Strains with an altered LD content or morphology as in the sei1∆ or lro1∆ mutant lead to a reduced replicative lifespan. In a yeast strain defective for the LON protease Pim1p, which showed an enhanced ROS production, increased doubling time and an altered mitochondrial morphology, a LRO1 overexpression resulted in a partially reversion of this "premature aging" phenotype.

17.
Sci Rep ; 11(1): 21346, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34725424

ABSTRACT

The molecular chaperones Hsc70 and Hsp90 are required for proteostasis control and specific folding of client proteins in eukaryotic and prokaryotic organisms. Especially in eukaryotes these ATP-driven molecular chaperones are interacting with cofactors that specify the client spectrum and coordinate the ATPase cycles. Here we find that a Hsc70-cofactor of the Hsp40 family from nematodes, DNJ-13, directly interacts with the kinase-specific Hsp90-cofactor CDC-37. The interaction is specific for DNJ-13, while DNJ-12 another DnaJ-like protein of C. elegans, does not bind to CDC-37 in a similar manner. Analytical ultracentrifugation is employed to show that one CDC-37 molecule binds to a dimeric DNJ-13 protein with low micromolar affinity. We perform cross-linking studies with mass spectrometry to identify the interaction site and obtain specific cross-links connecting the N-terminal J-domain of DNJ-13 with the N-terminal domain of CDC-37. Further AUC experiments reveal that both, the N-terminal part of CDC-37 and the C-terminal domain of CDC-37, are required for efficient interaction. Furthermore, the presence of DNJ-13 strengthens the complex formation between CDC-37 and HSP-90 and modulates the nucleotide-dependent effects. These findings on the interaction between Hsp40 proteins and Hsp90-cofactors provide evidence for a more intricate interaction between the two chaperone systems during client processing.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Cell Cycle Proteins/metabolism , HSP40 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Animals , Caenorhabditis elegans/chemistry , Caenorhabditis elegans Proteins/chemistry , Cell Cycle Proteins/chemistry , HSP40 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/chemistry , Models, Molecular , Protein Binding , Protein Folding , Protein Interaction Maps
18.
Aging (Albany NY) ; 13(15): 19127-19144, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34339392

ABSTRACT

The turnover of the epidermis beginning with the progenitor cells in the basal layer to the fully differentiated corneocytes is tightly regulated by calcium. Calcium more than anything else promotes the differentiation of keratinocytes which implies the need for a calcium gradient with low concentrations in the stratum basale and high concentrations in the stratum granulosum. One of the hallmarks of skin aging is a collapse of this gradient that has a direct impact on the epidermal fitness. The rise of calcium in the stratum basale reduces cell proliferation, whereas the drop of calcium in the stratum granulosum leads to a changed composition of the cornified envelope. We showed that keratinocytes respond to the calcium induced block of cell division by a large increase of the expression of several miRNAs (hsa-mir542-5p, hsa-mir125a, hsa-mir135a-5p, hsa-mir196a-5p, hsa-mir491-5p and hsa-mir552-5p). The pitfall of this rescue mechanism is a dramatic change in gene expression which causes a further impairment of the epidermal barrier. This effect is attenuated by a pseudogene (SPRR2C) that gives rise to a lncRNA. SPRR2C specifically resides in the stratum granulosum/corneum thus acting as a sponge for miRNAs.


Subject(s)
Calcium/metabolism , Cornified Envelope Proline-Rich Proteins/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Skin Aging/genetics , Cell Differentiation/physiology , Cell Proliferation , Cornified Envelope Proline-Rich Proteins/metabolism , Epidermal Cells/metabolism , Gene Expression , Humans , Keratinocytes/cytology , MicroRNAs/metabolism
19.
Cell Rep ; 36(4): 109446, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34320339

ABSTRACT

Transcription factors harbor defined regulatory intrinsically disordered regions (IDRs), which raises the question of how they mediate binding to structured co-regulators and modulate their activity. Here, we present a detailed molecular regulatory mechanism of Forkhead box O4 (FOXO4) by the structured transcriptional co-regulator ß-catenin. We find that the disordered FOXO4 C-terminal region, which contains its transactivation domain, binds ß-catenin through two defined interaction sites, and this is regulated by combined PKB/AKT- and CK1-mediated phosphorylation. Binding of ß-catenin competes with the autoinhibitory interaction of the FOXO4 disordered region with its DNA-binding Forkhead domain, and thereby enhances FOXO4 transcriptional activity. Furthermore, we show that binding of the ß-catenin inhibitor protein ICAT is compatible with FOXO4 binding to ß-catenin, suggesting that ICAT acts as a molecular switch between anti-proliferative FOXO and pro-proliferative Wnt/TCF/LEF signaling. These data illustrate how the interplay of IDRs, post-translational modifications, and co-factor binding contribute to transcription factor function.


Subject(s)
Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Forkhead Transcription Factors/chemistry , Forkhead Transcription Factors/metabolism , Intrinsically Disordered Proteins/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Motifs , Binding Sites , Casein Kinase I/metabolism , DNA/metabolism , HEK293 Cells , Humans , Models, Molecular , Oxidation-Reduction , Phosphorylation , Protein Binding , Protein Domains , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Structure-Activity Relationship , Thermodynamics , beta Catenin/metabolism
20.
Sci Rep ; 11(1): 12515, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34131228

ABSTRACT

The glucocorticoid receptor is a key regulator of essential physiological processes, which under the control of the Hsp90 chaperone machinery, binds to steroid hormones and steroid-like molecules and in a rather complicated and elusive response, regulates a set of glucocorticoid responsive genes. We here examine a human glucocorticoid receptor variant, harboring a point mutation in the last C-terminal residues, L773P, that was associated to Primary Generalized Glucocorticoid Resistance, a condition originating from decreased affinity to hormone, impairing one or multiple aspects of GR action. Using in vitro and in silico methods, we assign the conformational consequences of this mutation to particular GR elements and report on the altered receptor properties regarding its binding to dexamethasone, a NCOA-2 coactivator-derived peptide, DNA, and importantly, its interaction with the chaperone machinery of Hsp90.


Subject(s)
Glucocorticoids/genetics , HSP90 Heat-Shock Proteins/genetics , Molecular Conformation/drug effects , Receptors, Glucocorticoid/genetics , Animals , DNA/genetics , Dexamethasone/pharmacology , Glucocorticoids/chemistry , HSP90 Heat-Shock Proteins/ultrastructure , Humans , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/pathology , Molecular Chaperones/genetics , Molecular Chaperones/ultrastructure , Nuclear Receptor Coactivator 2/chemistry , Nuclear Receptor Coactivator 2/genetics , Peptides/genetics , Point Mutation/genetics , Protein Binding/genetics , Receptors, Glucocorticoid/deficiency , Receptors, Glucocorticoid/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL