Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 11(1)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35056049

ABSTRACT

Positive-strand RNA viruses such as hepatitis C virus (HCV) hijack key factors of lipid metabolism of infected cells and extensively modify intracellular membranes to support the viral lifecycle. While lipid metabolism plays key roles in viral particle assembly and maturation, viral RNA synthesis is closely linked to the remodeling of intracellular membranes. The formation of viral replication factories requires a number of interactions between virus proteins and host factors including lipids. The structure-function relationship of those proteins is influenced by their lipid environments and lipids that selectively modulate protein function. Here, we review our current understanding on the roles of phospholipids in HCV replication and of lipid-protein interactions in the structure-function relationship of the NS5A protein. NS5A is a key factor in membrane remodeling in HCV-infected cells and is known to recruit phosphatidylinositol 4-kinase III alpha to generate phosphatidylinositol 4-phosphate at the sites of replication. The dynamic interplay between lipids and viral proteins within intracellular membranes is likely key towards understanding basic mechanisms in the pathobiology of virus diseases, the mode of action of specific antiviral agents and related drug resistance mechanisms.

2.
J Biol Chem ; 295(40): 13862-13874, 2020 10 02.
Article in English | MEDLINE | ID: mdl-32747444

ABSTRACT

Inhibitors against the NS3-4A protease of hepatitis C virus (HCV) have proven to be useful drugs in the treatment of HCV infection. Although variants have been identified with mutations that confer resistance to these inhibitors, the mutations do not restore replicative fitness and no secondary mutations that rescue fitness have been found. To gain insight into the molecular mechanisms underlying the lack of fitness compensation, we screened known resistance mutations in infectious HCV cell culture with different genomic backgrounds. We observed that the Q41R mutation of NS3-4A efficiently rescues the replicative fitness in cell culture for virus variants containing mutations at NS3-Asp168 To understand how the Q41R mutation rescues activity, we performed protease activity assays complemented by molecular dynamics simulations, which showed that protease-peptide interactions far outside the targeted peptide cleavage sites mediate substrate recognition by NS3-4A and support protease cleavage kinetics. These interactions shed new light on the mechanisms by which NS3-4A cleaves its substrates, viral polyproteins and a prime cellular antiviral adaptor protein, the mitochondrial antiviral signaling protein MAVS. Peptide binding is mediated by an extended hydrogen-bond network in NS3-4A that was effectively optimized for protease-MAVS binding in Asp168 variants with rescued replicative fitness from NS3-Q41R. In the protease harboring NS3-Q41R, the N-terminal cleavage products of MAVS retained high affinity to the active site, rendering the protease susceptible for potential product inhibition. Our findings reveal delicately balanced protease-peptide interactions in viral replication and immune escape that likely restrict the protease adaptive capability and narrow the virus evolutionary space.


Subject(s)
Adaptor Proteins, Signal Transducing , Hepacivirus/physiology , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , Virus Replication/drug effects , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Substitution , Cell Line, Tumor , Humans , Mutation, Missense , Serine Proteases/chemistry , Serine Proteases/genetics , Serine Proteases/metabolism , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/genetics
3.
Nat Struct Mol Biol ; 24(2): 123-130, 2017 02.
Article in English | MEDLINE | ID: mdl-28092368

ABSTRACT

Polycystin-2 (PC2), a calcium-activated cation TRP channel, is involved in diverse Ca2+ signaling pathways. Malfunctioning Ca2+ regulation in PC2 causes autosomal-dominant polycystic kidney disease. Here we report two cryo-EM structures of distinct channel states of full-length human PC2 in complex with lipids and cations. The structures reveal conformational differences in the selectivity filter and in the large exoplasmic domain (TOP domain), which displays differing N-glycosylation. The more open structure has one cation bound below the selectivity filter (single-ion mode, PC2SI), whereas multiple cations are bound along the translocation pathway in the second structure (multi-ion mode, PC2MI). Ca2+ binding at the entrance of the selectivity filter suggests Ca2+ blockage in PC2MI, and we observed density for the Ca2+-sensing C-terminal EF hand in the unblocked PC2SI state. The states show altered interactions of lipids with the pore loop and TOP domain, thus reflecting the functional diversity of PC2 at different locations, owing to different membrane compositions.


Subject(s)
TRPP Cation Channels/chemistry , Binding Sites , Calcium/chemistry , Calcium Signaling , Cryoelectron Microscopy , Glycosylation , HEK293 Cells , Humans , Models, Molecular , Phosphatidic Acids/chemistry , Phosphatidylcholines/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Domains , Protein Processing, Post-Translational , Protein Structure, Quaternary
SELECTION OF CITATIONS
SEARCH DETAIL
...