Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
Soft Matter ; 20(17): 3653-3665, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38623629

ABSTRACT

Deformable colloids and macromolecules adsorb at interfaces as they decrease the interfacial energy between the two media. The deformability, or softness, of these particles plays a pivotal role in the properties of the interface. In this study, we employ a comprehensive in situ approach, combining neutron reflectometry with molecular dynamics simulations, to thoroughly examine the profound influence of softness on the structure of microgel Langmuir monolayers under compression. Lateral compression of both hard and soft microgel particle monolayers induces substantial structural alterations, leading to an amplified protrusion of the microgels into the aqueous phase. However, a critical distinction emerges: hard microgels are pushed away from the interface, in stark contrast to the soft ones, which remain firmly anchored to it. Concurrently, on the air-exposed side of the monolayer, lateral compression induces a flattening of the surface of the hard monolayer. This phenomenon is not observed for the soft particles as the monolayer is already extremely flat even in the absence of compression. These findings significantly advance our understanding of the key role of softness on both the equilibrium phase behavior of the monolayer and its effect when soft colloids are used as stabilizers of responsive interfaces and emulsions.

2.
ACS Nano ; 18(10): 7546-7557, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38417118

ABSTRACT

Microgels are commonly applied as solute carriers, where the size, density, and functionality of the microgels depend on solute binding. As representatives for ionic solutes with high affinity for the microgel, we study here the effect of superchaotropic Keggin polyoxometalates (POMs) PW12O403- (PW) and SiW12O404- (SiW) on the aqueous swelling and internal structure of nonionic poly(N-isopropylacrylamide) (pNiPAM) microgels by light scattering techniques and small-angle X-ray scattering. Due to their weak hydration, these POMs bind spontaneously to the microgels at millimolar concentrations. The microgels thus become charged and swell at low POM concentration, surprisingly without strongly increasing the volume phase transition temperature, and deswell at higher POM concentration. The swelling arises because of the osmotic pressure of dissociated counterions of the POMs, while the deswelling is due to POMs acting as physical cross-links in the microgels under screened electrostatics in NaCl or excess POM solution. This swelling/deswelling transition is sharper for PW than for SiW related to the lower charge density, weaker hydration, and stronger binding of PW. The POMs elicit qualitatively and quantitatively different swelling effects from ionic surfactants and classical salts. Moreover, the network softness and topology govern the swelling response upon POM binding. The softer the microgel, the stronger is the swelling response, while, inside the microgel, regions of high polymer density swell/contract more upon electric charging/cross-linking than regions with low polymer density. POM binding thus enables fine-tuning of microgel properties and highlights the role of network topology in microgel swelling. Because POMs decompose at an alkaline pH, these POM/microgel systems also exhibit pH-responsive swelling in addition to the typical temperature responsiveness of pNiPAM microgels.

3.
Soft Matter ; 20(4): 773-787, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38165831

ABSTRACT

Gelatin methacryloyl (GelMA) is a widely used semi-synthetic polymer for a variety of bioapplications. However, the development of versatile GelMA hydrogels requires tuning of their microstructure. Herein, we report the possibility of preparing hydrogels with various microstructures under shear from an aqueous two-phase system (ATPS) consisting of GelMA and dextran. The influence of an applied preshear on dextran/GelMA droplets and bicontinuous systems is investigated by rheology that allows the application of a constant shear and is immediately followed by in situ UV-curing of the GelMA-rich phase. The microstructure of the resulting hydrogels is examined by confocal laser scanning microscopy (CLSM). The results show that the GelMA string phase and GelMA hydrogels with aligned bands can be formed depending on the concentration of dextran and the applied preshear. The influence of the pH of the ATPS is investigated and demonstrates the formation of multiple emulsions upon decreasing the charge density of GelMA. The preshearing of multiple emulsions, following gelation, leads to the formation of porous GelMA microgels. The diversity of the formed structures highlights the application potential of preshearing ATPS in the development of functional soft materials.

4.
Langmuir ; 39(50): 18354-18365, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38059308

ABSTRACT

Surface-active polymers have important applications as effective and responsive emulsifiers, foaming agents, and coatings. In this contribution, we explore the impact of the polymer architecture on the behavior at oil-water interfaces by comparing different poly(N-isopropylacrylamide) (pNIPAM)-based systems, namely, monolayers of linear and star-shaped macromolecules, ultralow cross-linked, regular cross-linked, and hollow microgels. Compression isotherms were determined experimentally as well as by computer simulations. The latter provides information about the conformational changes of the individual macromolecules as well as the interfacial properties of the monolayer, including the surface structure and the density distribution of an ensemble of interacting macromolecules near an interface. Surprisingly, the isotherms of the linear polymer, of the star polymer, and of the ultralow cross-linked microgel have an identical shape that differs from the isotherms of regular and hollow microgels. We introduced the mass fraction of adsorbed polymer, which gives a measure of the polymer segments contributing to the isotherm in relation to the most flexible architecture, i.e., the linear polymer, and allows a comparison of polymers with different architectures. The data demonstrate that increasing the number of cross-links leads to a significantly lower amount of polymer in the proximity of the interface as the increase in cross-linker reduces the deformability or softness of the polymers at the interface. The volume fraction profiles along the normal to the interface are essentially different in the microgel monolayers as compared to those in the linear and star polymer. The profiles through the microgel contact line and their growth upon initial compression are similar to those of the linear chains. Herewith, the profiles through the center of mass practically do not change upon compression. Therefore, the initial growth in the microgel surface pressure reveals the polymer-like behavior and is related to the deformation of the peripheral part of the microgel. Further compression of the microgel monolayer leads to 3D interactions of the microgels within the aqueous side of the interface and soft colloid-like behavior.

5.
Adv Mater ; 35(41): e2305845, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37578840

ABSTRACT

The serial connection of multiple stimuli-responses in polymer architectures enables the logically conjunctive gating of functional material processes on demand. Here, a photoswitchable diarylethene (DAE) acts as a crosslinker in poly(N-vinylcaprolactam) microgels and allows the light-induced shift of the volume phase-transition temperature (VPTT). While swollen microgels below the VPTT are susceptible to force and undergo breakage-aggregation processes, collapsed microgels above the VPTT stay intact in mechanical fields induced by ultrasonication. Within a VPTT shift regime, photoswitching of the DAE transfers microgels from the swollen to the collapsed state and thereby gates their response to force as demonstrated by the light-gated activation of an embedded fluorogenic mechanophore. This photoinduced mechanical cloaking system operates on the polymer topology level and is thereby principally universally applicable.

6.
Small ; 19(44): e2208089, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37403299

ABSTRACT

The restricted porosity of most hydrogels established for in vitro 3D tissue engineering applications limits embedded cells with regard to their physiological spreading, proliferation, and migration behavior. To overcome these confines, porous hydrogels derived from aqueous two-phase systems (ATPS) are an interesting alternative. However, while developing hydrogels with trapped pores is widespread, the design of bicontinuous hydrogels is still challenging. Herein, an ATPS consisting of photo-crosslinkable gelatin methacryloyl (GelMA) and dextran is presented. The phase behavior, monophasic or biphasic, is tuned via the pH and dextran concentration. This, in turn, allows the formation of hydrogels with three distinct microstructures: homogenous nonporous, regular disconnected-pores, and bicontinuous with interconnected-pores. The pore size of the latter two hydrogels can be tuned from ≈4 to 100 µm. Cytocompatibility of the generated ATPS hydrogels is confirmed by testing the viability of stromal and tumor cells. Their distribution and growth pattern are cell-type specific but are also strongly defined by the microstructure of the hydrogel. Finally, it is demonstrated that the unique porous structure is sustained when processing the bicontinuous system by inkjet and microextrusion techniques. The proposed ATPS hydrogels hold great potential for 3D tissue engineering applications due to their unique tunable interconnected porosity.


Subject(s)
Biocompatible Materials , Dextrans , Biocompatible Materials/chemistry , Gelatin/chemistry , Tissue Engineering/methods , Hydrogels/chemistry , Methacrylates , Tissue Scaffolds/chemistry , Printing, Three-Dimensional
7.
ACS Nano ; 17(8): 7257-7271, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37053566

ABSTRACT

Hollow microgels are fascinating model systems at the crossover between polymer vesicles, emulsions, and colloids as they deform, interpenetrate, and eventually shrink at higher volume fraction or when subjected to an external stress. Here, we introduce a system consisting of microgels with a micrometer-sized cavity enabling a straightforward characterization in situ using fluorescence microscopy techniques. Similarly to elastic capsules, these systems are found to reversibly buckle above a critical osmotic pressure, conversely to smaller hollow microgels, which were previously reported to deswell at high volume fraction. Simulations performed on monomer-resolved in silico hollow microgels confirm the buckling transition and show that the presented microgels can be described with a thin shell model theory. When brought to an interface, these microgels, that we define as microgel capsules, strongly deform and we thus propose to utilize them to locally probe interfacial properties within a theoretical framework adapted from the Johnson-Kendall-Roberts (JKR) theory. Besides their capability to sense their environment and to address fundamental questions on the elasticity and permeability of microgel systems, microgel capsules can be further envisioned as model systems mimicking anisotropic responsive biological systems such as red blood and epithelial cells thanks to the possibility offered by microgels to be synthesized with custom-designed properties.

8.
Macromol Biosci ; 23(8): e2200456, 2023 08.
Article in English | MEDLINE | ID: mdl-36605024

ABSTRACT

Depending on their architectural and chemical design, microgels can selectively take up and release small molecules by changing the environmental properties, or capture and protect their cargo from the surrounding conditions. These outstanding properties make them promising candidates for use in biomedical applications as delivery or carrier systems. In this study, hollow anionic p(N-isopropylacrylamid-e-co-itaconic acid) microgels are synthesized and analyzed regarding their size, charge, and charge distribution. Furthermore, interactions between these microgels and the model protein cytochrome c are investigated as a function of pH. In this system, pH serves as a switch for the electrostatic interactions to alternate between no interaction, attraction, and repulsion. UV-vis spectroscopy is used to quantitatively study the encapsulation of cytochrome c and possible leakage. Additionally, fluorescence-lifetime images unravel the spatial distribution of the protein within the hollow microgels as a function of pH. These analyses show that cytochrome c mainly remains entrapped in the microgel, with pH controlling the localization of the protein - either in the microgel's cavity or in its network. This significantly differentiates these hollow microgels from microgels with similar chemical composition but without a solvent filled cavity.


Subject(s)
Nanostructures , Capsules/chemistry , Hydrogen-Ion Concentration , Microgels/chemistry , Cytochromes c/chemistry , Anions/chemistry
9.
Angew Chem Int Ed Engl ; 62(3): e202210208, 2023 01 16.
Article in English | MEDLINE | ID: mdl-36346946

ABSTRACT

Nanometer-sized anions (nano-ions) like polyoxometalates and boron clusters exhibit so-called superchaotropic behavior, which describes their strong binding to hydrated non-ionic matter in water. We show here that nano-ions, at millimolar concentrations, dramatically enhance the viscosity and induce gelation of aqueous solutions of non-ionic cellulose ethers (CEs), a class of widely utilized polymers known for their thickening and gel-forming ability. These phenomena arise from an interplay of attractive forces and repulsive electrostatic forces between CE-chains upon nano-ion binding. The attractive forces manifest themselves as aggregation of CE-chains into a physically crosslinked polymer network (gel). In turn, the electrostatic repulsions hamper the viscosity increase and gelation. Superchaotropic nano-ion binding emerges as a novel and general physical crosslinking motif for CE-solutions and exceeds by far the conventional thickening effects of classical salts and ionic surfactants.


Subject(s)
Cellulose , Ether , Polymers , Water , Ethyl Ethers , Ethers , Solutions
10.
Adv Healthc Mater ; 12(10): e2203302, 2023 04.
Article in English | MEDLINE | ID: mdl-36546310

ABSTRACT

Fibrin-collagen hydrogel blends exhibit high potential for tissue engineering applications. However, it is still unclear whether the underlying cross-linking mechanisms are of chemical or physical nature. It is here hypothesized that chemical cross-linkers play a negligible role and that instead pH and thrombin concentration are decisive for synthetizing blends with high stiffness and hydrolytic stability. Different fibrin-collagen formulations (pure and with additional transglutaminase) are used and the blends' compaction rate, hydrolytic stability, compressive strength, and hydrogel microstructure are investigated. The effect of thrombin concentration on gel compaction is examined and the importance of pH control during synthesis observed. It is revealed that transglutaminase impairs gel stability and it is deduced that fibrin-collagen blends mainly cross-link by mechanical interactions due to physical fibril entanglement as opposed to covalent bonds from chemical cross-linking. High thrombin concentrations and basic pH during synthesis reduce gel compaction and enhance stiffness and long-term stability. Scanning electron microscopy reveals a highly interpenetrating fibrous network with unique, interconnected open-porous microstructures. Endothelial cells proliferate on the blends and form a confluent monolayer. This study reveals the underlying cross-linking mechanisms and presents enhanced fibrin-collagen blends with high stiffness, hydrolytic stability, and large, interconnected pores; findings that offer high potential for advanced tissue engineering applications.


Subject(s)
Endothelial Cells , Thrombin , Fibrin/chemistry , Porosity , Biocompatible Materials/chemistry , Collagen/chemistry , Tissue Engineering , Hydrogels/chemistry , Hydrogen-Ion Concentration
11.
Phys Chem Chem Phys ; 25(4): 2810-2820, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36052753

ABSTRACT

Micro- and nanogels are widely used to stabilise emulsions and simultaneously implement their responsiveness to the external stimuli. One of the factors that improves the emulsion stability is the nanogel softness. Here, we study how the softest nanogels that can be synthesised with precipitation polymerisation of N-isopropylacrylamide (NIPAM), the ultra-low crosslinked (ULC) nanogels, stabilise oil-in-water emulsions. We show that ULC nanogels can efficiently stabilise emulsions already at low mass concentrations. These emulsions are resistant to droplet flocculation, stable against coalescence, and can be easily broken upon an increase in temperature. The resistance to flocculation of the ULC-stabilised emulsion droplets is similar to the one of emulsions stabilised by linear pNIPAM. In contrast, the stability against coalescence and the temperature-responsiveness closely resemble those of emulsions stabilised by regularly crosslinked pNIPAM nanogels. The reason for this combination of properties is that ULC nanogels can be thought of as colloids in between flexible macromolecules and particles. As a polymer, ULC nanogels can efficiently stretch at the interface and cover it uniformly. As a regularly crosslinked nanogel particle, ULC nanogels protect emulsion droplets against coalescence by providing a steric barrier and rapidly respond to changes in external stimuli thus breaking the emulsion. This polymer-particle duality of ULC nanogels can be exploited to improve the properties of emulsions for various applications, for example in heterogeneous catalysis or in food science.

12.
J Chem Phys ; 157(19): 194901, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36414436

ABSTRACT

The response of soft colloids to crowding depends sensitively on the particles' compressibility. Nanogel suspensions provide model systems that are often studied to better understand the properties of soft materials and complex fluids from the formation of colloidal crystals to the flow of viruses, blood, or platelet cells in the body. Large spherical nanogels, when embedded in a matrix of smaller nanogels, have the unique ability to spontaneously deswell to match their size to that of the nanogel composing the matrix. In contrast to hard colloids, this self-healing mechanism allows for crystal formation without giving rise to point defects or dislocations. Here, we show that anisotropic ellipsoidal nanogels adapt both their size and their shape depending on the nature of the particles composing the matrix in which they are embedded. Using small-angle neutron scattering with contrast variation, we show that ellipsoidal nanogels become spherical when embedded in a matrix of spherical nanogels. In contrast, the anisotropy of the ellipsoid is enhanced when they are embedded in a matrix of anisotropic nanogels. Our experimental data are supported by Monte Carlo simulations that reproduce the trend of decreasing aspect ratio of ellipsoidal nanogels with increasing crowding by a matrix of spherical nanogels.


Subject(s)
Colloids , Polyethylene Glycols , Nanogels , Anisotropy , Polyethylene Glycols/chemistry , Colloids/chemistry
13.
Biomater Sci ; 10(19): 5552-5565, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-35969162

ABSTRACT

Fibrin-gelatin hydrogel blends exhibit high potential for tissue engineering in vitro applications. However, the means to tailor these blends in order to control their properties, thus opening up a broad range of new target applications, have been insufficiently explored. We hypothesized that a controlled heat treatment of gelatin prior to blend synthesis enables control of hydrolytic swelling and shrinking, stiffness, and microstructural architecture of fibrin-gelatin based hydrogel blends while providing tremendous long-term stability. We investigated these hydrogel blends' compressive strength, in vitro degradation stability, and microstructure in order to test this hypothesis. In addition, we examined the gel's ability to support endothelial cell proliferation and stretching of encapsulated smooth muscle cells. This research showed that a controlled heat pretreatment of the gelatin component strongly influenced the stiffness, swelling, shrinking, and microstructural architecture of the final blends regardless of identical gelatin mass fractions. All blends offered high long-term hydrolytic stability. In conclusion, the results of this study open the possibility to use this technique in order to tune low-concentrated, open-porous fibrin-based hydrogels, even in long-term tissue engineering in vitro experiments.


Subject(s)
Gelatin , Hydrogels , Biocompatible Materials/chemistry , Fibrin/chemistry , Gelatin/chemistry , Hot Temperature , Hydrogels/chemistry , Tissue Engineering/methods
14.
Soft Matter ; 18(31): 5750-5758, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35899831

ABSTRACT

The softness of an object can be quantified by one of the fundamental elastic moduli. The bulk modulus of the particle is most appropriate in the presence of isotropic compressions. Here, we use small-angle neutron scattering with contrast variation to directly access the bulk modulus of polymeric nanocapsules - pNIPAM-based hollow nanogels. We show that the size of the cavity is the most important quantity that determines the softness of hollow nanogels. During initial compression, the polymer collapses into the cavity and leads to a large change in the particle volume, resulting in a very small initial bulk modulus. Once the cavity is partially occupied by the polymer, the hollow nanogels become significantly stiffer since now the highly crosslinked network has to be compressed. Furthermore, we show that the larger the cavity, the softer the nanogel.

15.
Sci Adv ; 8(26): eabn6129, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35776796

ABSTRACT

The bulk modulus, K, quantifies the elastic response of an object to an isotropic compression. For soft compressible colloids, knowing K is essential to accurately predict the suspension response to crowding. Most colloids have complex architectures characterized by different softness, which additionally depends on compression. Here, we determine the different values of K for the various morphological parts of individual nanogels and probe the changes of K with compression. Our method uses a partially deuterated polymer, which exerts the required isotropic stress, and small-angle neutron scattering with contrast matching to determine the form factor of the particles without any scattering contribution from the polymer. We show a clear difference in softness, compressibility, and evolution of K between the shell of the nanogel and the rest of the particle, depending on the amount of cross-linker used in their synthesis.

16.
Phys Chem Chem Phys ; 24(23): 14408-14415, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35642955

ABSTRACT

Functional microgels have powerful applications, especially due to their quick responsiveness to different external stimuli such as temperature, pH, ionic strength, solvent composition and light. Here, we describe the synthesis of novel dual-responsive poly(N-isopropylacrylamide) (PNIPAM) microgels and demonstrate that, in addition to temperature, light changes their properties. The crosslinks inside the microgels were achieved by the host-guest interactions between the trans azobenzene (transAzo) and ß-cyclodextrin (ßCD) units. transAzo can be photoisomerized to cisAzo which exhibits significant lower binding affinity to ßCD. As a consequence, the crosslink density, and thus several microgel properties, can be controlled by light irradiation. Surprisingly, this irradiation with light can significantly change the volume phase transition temperature (VPTT) by several degrees centigrade, presumably due to the fact that the polar ßCD shields the transAzo bound to it, whereas the unbound cisAzo is rather apolar. As a result, continuous irradiation with specific wavelengths until reaching the respective photostationary state allows for a full control over the VPTT within the physiologically relevant range between 32 °C and 38 °C.


Subject(s)
Microgels , Gels/chemistry , Phase Transition , Temperature , Transition Temperature
17.
Nat Commun ; 13(1): 3744, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35768399

ABSTRACT

The structural characterization of microgels at interfaces is fundamental to understand both their 2D phase behavior and their role as stabilizers that enable emulsions to be broken on demand. However, this characterization is usually limited by available experimental techniques, which do not allow a direct investigation at interfaces. To overcome this difficulty, here we employ neutron reflectometry, which allows us to probe the structure and responsiveness of the microgels in-situ at the air-water interface. We investigate two types of microgels with different cross-link density, thus having different softness and deformability, both below and above their volume phase transition temperature, by combining experiments with computer simulations of in silico synthesized microgels. We find that temperature only affects the portion of microgels in water, while the strongest effect of the microgels softness is observed in their ability to protrude into the air. In particular, standard microgels have an apparent contact angle of few degrees, while ultra-low cross-linked microgels form a flat polymeric layer with zero contact angle. Altogether, this study provides an in-depth microscopic description of how different microgel architectures affect their arrangements at interfaces, and will be the foundation for a better understanding of their phase behavior and assembly.

18.
Chem Rev ; 122(13): 11675-11700, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35671377

ABSTRACT

Softness plays a key role in determining the macroscopic properties of colloidal systems, from synthetic nanogels to biological macromolecules, from viruses to star polymers. However, we are missing a way to quantify what the term "softness" means in nanoscience. Having quantitative parameters is fundamental to compare different systems and understand what the consequences of softness on the macroscopic properties are. Here, we propose different quantities that can be measured using scattering methods and microscopy experiments. On the basis of these quantities, we review the recent literature on micro- and nanogels, i.e. cross-linked polymer networks swollen in water, a widely used model system for soft colloids. Applying our criteria, we address the question what makes a nanomaterial soft? We discuss and introduce general criteria to quantify the different definitions of softness for an individual compressible colloid. This is done in terms of the energetic cost associated with the deformation and the capability of the colloid to isotropically deswell. Then, concentrated solutions of soft colloids are considered. New definitions of softness and new parameters, which depend on the particle-to-particle interactions, are introduced in terms of faceting and interpenetration. The influence of the different synthetic routes on the softness of nanogels is discussed. Concentrated solutions of nanogels are considered and we review the recent results in the literature concerning the phase behavior and flow properties of nanogels both in three and two dimensions, in the light of the different parameters we defined. The aim of this review is to look at the results on micro- and nanogels in a more quantitative way that allow us to explain the reported properties in terms of differences in colloidal softness. Furthermore, this review can give researchers dealing with soft colloids quantitative methods to define unambiguously which softness matters in their compound.


Subject(s)
Nanogels/chemistry , Polyethylene Glycols/chemistry , Polyethyleneimine , Colloids , Polyethyleneimine/chemistry , Polymers/chemistry
19.
Langmuir ; 38(17): 5031-5032, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35502539
20.
Soft Matter ; 18(15): 2884-2909, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35311857

ABSTRACT

Cononsolvency is an intriguing phenomenon where a polymer collapses in a mixture of good solvents. This cosolvent-induced modulation of the polymer solubility has been observed in solutions of several polymers and biomacromolecules, and finds application in areas such as hydrogel actuators, drug delivery, compound detection and catalysis. In the past decade, there has been a renewed interest in understanding the molecular mechanisms which drive cononsolvency with a predominant emphasis on its connection to the preferential adsorption of the cosolvent. Significant efforts have also been made to understand cononsolvency in complex systems such as micelles, block copolymers and thin films. In this review, we will discuss some of the recent developments from the experimental, simulation and theoretical fronts, and provide an outlook on the problems and challenges which are yet to be addressed.

SELECTION OF CITATIONS
SEARCH DETAIL
...