Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 16(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38999737

ABSTRACT

The entero-mammary pathway is a specialized route that selectively translocates bacteria to the newborn's gut, playing a crucial role in neonatal development. Previous studies report shared bacterial and archaeal taxa between human milk and neonatal intestine. However, the functional implications for neonatal development are not fully understood due to limited evidence. This study aimed to identify and characterize the microbiota and metabolome of human milk, mother, and infant stool samples using high-throughput DNA sequencing and FT-ICR MS methodology at delivery and 4 months post-partum. Twenty-one mothers and twenty-five infants were included in this study. Our results on bacterial composition suggest vertical transmission of bacteria through breastfeeding, with major changes occurring during the first 4 months of life. Metabolite chemical characterization sheds light on the growing complexity of the metabolites. Further data integration and network analysis disclosed the interactions between different bacteria and metabolites in the biological system as well as possible unknown pathways. Our findings suggest a shared bacteriome in breastfed mother-neonate pairs, influenced by maternal lifestyle and delivery conditions, serving as probiotic agents in infants for their healthy development. Also, the presence of food biomarkers in infants suggests their origin from breast milk, implying selective vertical transmission of these features.


Subject(s)
Breast Feeding , Feces , Gastrointestinal Microbiome , Milk, Human , Humans , Milk, Human/microbiology , Milk, Human/chemistry , Female , Infant, Newborn , Gastrointestinal Microbiome/physiology , Feces/microbiology , Infant , Adult , Metabolome , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Male , Mothers
2.
Alcohol ; 85: 77-94, 2020 06.
Article in English | MEDLINE | ID: mdl-31201859

ABSTRACT

Beer is a beverage that has been consumed worldwide for thousands of years due to social, religious, and cultural reasons; it contains polyphenolic compounds as well as phenolic acids with a potential positive effect on human health. This study aimed to explore the impact of moderate beer consumption on human health and gut microbiota diversity. Three hundred fifty-five mL of non-alcoholic beer (NAB) or alcoholic beer (AB) were consumed daily by the participants for 30 days in each study. Anthropometric measures, blood samples for biochemistry, and fecal samples for microbiota analysis were collected on Day 1 and Day 30. Microbial diversity was characterized by high-throughput sequencing of 16S rDNA libraries, and data were analyzed using the QIIME pipeline. We found that NAB and AB have effects on the composition of the gut microbiota, favoring the proliferation of Bacteroidetes with respect to Firmicutes. No increase in weight, waist, and hip parameters was observed, and the liver and lipid profile values were not modified for NAB. In addition, the consumption of NAB induced a decrease in fasting blood serum glucose and an increase in functional ß cells, while, on the other hand, there was an increase in blood serum glucose and a decrease in functional ß cells with the consumption of AB. In general, beer consumption neither changed anthropometric values, nor affected liver function. Although the glucose values decreased with NAB or increased with AB, they remained within the normal range. Our conclusion is that moderate consumption of NAB has a positive effect on human health via supplementation of biological active polyphenol and phenolic acids, and by enrichment of the gut microbiota diversity with beneficial bacteria, while the presence of alcohol in AB interferes with this effect. More work should be done on this topic before general conclusions are drawn.


Subject(s)
Beer , Blood Glucose/drug effects , Gastrointestinal Microbiome/drug effects , Insulin-Secreting Cells/drug effects , Adult , Ethanol/pharmacology , Fasting , Female , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL