Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 107(1-1): 014138, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36797967

ABSTRACT

We derive a functional for the entropy contributed by any microscopic degrees of freedom as arising from their measurable pair correlations. Applicable both in and out of equilibrium, this functional yields the maximum entropy which a system can have given a certain correlation function. When applied to different correlations, the method allows us to identify the degrees of freedom governing a certain physical regime, thus capturing and characterizing dynamic transitions. The formalism applies also to systems whose translational invariance is broken by external forces and whose number of particles may vary. We apply it to experimental results for jammed bidisperse emulsions, capturing the crossover of this nonequilibrium system from crystalline to disordered hyperuniform structures as a function of mixture composition. We discover that the cross-correlations between the positions and sizes of droplets in the emulsion play the central role in the formation of the disordered hyperuniform states. We discuss implications of the approach for entropy estimation out of equilibrium and for characterizing transitions in disordered systems.

2.
Proc Natl Acad Sci U S A ; 116(19): 9202-9207, 2019 May 07.
Article in English | MEDLINE | ID: mdl-31019086

ABSTRACT

We show that slightly polydisperse disordered 2D foams can be used as a self-assembled template for isotropic photonic band gap (PBG) materials for transverse electric (TE) polarization. Calculations based on in-house experimental and simulated foam structures demonstrate that, at sufficient refractive index contrast, a dry foam organization with threefold nodes and long slender Plateau borders is especially advantageous to open a large PBG. A transition from dry to wet foam structure rapidly closes the PBG mainly by formation of bigger fourfold nodes, filling the PBG with defect modes. By tuning the foam area fraction, we find an optimal quantity of dielectric material, which maximizes the PBG in experimental systems. The obtained results have a potential to be extended to 3D foams to produce a next generation of self-assembled disordered PBG materials, enabling fabrication of cheap and scalable photonic devices.

3.
Phys Rev Lett ; 119(20): 208001, 2017 Nov 17.
Article in English | MEDLINE | ID: mdl-29219379

ABSTRACT

We study long range density fluctuations (hyperuniformity) in two-dimensional jammed packings of bidisperse droplets. Taking advantage of microfluidics, we systematically span a large range of size and concentration ratios of the two droplet populations. We identify various defects increasing long range density fluctuations mainly due to organization of local particle environment. By choosing an appropriate bidispersity, we fabricate materials with a high level of hyperuniformity. Interesting transparency properties of these optimized materials are established based on numerical simulations.

4.
Adv Sci (Weinh) ; 3(6): 1600012, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27840804

ABSTRACT

The creation of new colloidal materials involves the design of functional building blocks. Here, a microfluidic method for designing building blocks one by one, at high throughput, with a broad range of shapes is introduced. The method exploits a coupling between hydrodynamic interactions and depletion forces that controls the configurational dynamics of droplet clusters traveling in microfluidic channels. Droplet clusters can be solidified in situ with UV. By varying the flow parameters, clusters are prescribed a given size, geometry, chemical and/or magnetic heterogeneities enabling local bonding. Compact structures (chains, triangles, diamonds, tetrahedrons,...) and noncompact structures, such as crosses and T, difficult to obtain with current techniques are produced. Size dispersions are small (2%) and throughputs are high (30 000 h-1). The work opens a new pathway, based on microfluidics, for designing colloidal building blocks with a potential to enable the creation of new materials.

SELECTION OF CITATIONS
SEARCH DETAIL