Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters










Publication year range
1.
Trends Endocrinol Metab ; 34(11): 704-717, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37673765

ABSTRACT

White adipose tissue (WAT) plays an important role in the integration of whole-body metabolism by storing fat and mobilizing triacylglycerol when needed. The released free fatty acids can then be oxidized by other tissues to provide ATP. AMP-activated protein kinase (AMPK) is a key regulator of metabolic pathways, and can be targeted by a new generation of direct, small-molecule activators. AMPK activation in WAT inhibits insulin-stimulated lipogenesis and in some situations also inhibits insulin-stimulated glucose uptake, but AMPK-induced inhibition of ß-adrenergic agonist-stimulated lipolysis might need to be re-evaluated in vivo. The lack of dramatic effects of AMPK activation on basal metabolism in WAT could be advantageous when treating type 2 diabetes with pharmacological pan-AMPK activators.

2.
Nat Commun ; 14(1): 3706, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37349319

ABSTRACT

Tau protein aggregates in several neurodegenerative disorders, referred to as tauopathies. The tau isoforms observed in post mortem human brain aggregates is used to classify tauopathies. However, distinguishing tauopathies ante mortem remains challenging, potentially due to differences between insoluble tau in aggregates and soluble tau in body fluids. Here, we demonstrated that tau isoforms differ between tauopathies in insoluble aggregates, but not in soluble brain extracts. We therefore characterized post-translational modifications of both the aggregated and the soluble tau protein obtained from post mortem human brain tissue of patients with Alzheimer's disease, cortico-basal degeneration, Pick's disease, and frontotemporal lobe degeneration. We found specific soluble signatures for each tauopathy and its specific aggregated tau isoforms: including ubiquitination on Lysine 369 for cortico-basal degeneration and acetylation on Lysine 311 for Pick's disease. These findings provide potential targets for future development of fluid-based biomarker assays able to distinguish tauopathies in vivo.


Subject(s)
Alzheimer Disease , Corticobasal Degeneration , Pick Disease of the Brain , Tauopathies , Humans , tau Proteins/metabolism , Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Pick Disease of the Brain/metabolism , Lysine/metabolism , Tauopathies/diagnosis , Tauopathies/metabolism , Protein Isoforms/metabolism , Brain/metabolism , Protein Processing, Post-Translational
3.
Biochem J ; 480(1): 105-125, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36637190

ABSTRACT

Is there a role for AMPK in the control of hepatic gluconeogenesis and could targeting AMPK in liver be a viable strategy for treating type 2 diabetes? These are frequently asked questions this review tries to answer. After describing properties of AMPK and different small-molecule AMPK activators, we briefly review the various mechanisms for controlling hepatic glucose production, mainly via gluconeogenesis. The different experimental and genetic models that have been used to draw conclusions about the role of AMPK in the control of liver gluconeogenesis are critically discussed. The effects of several anti-diabetic drugs, particularly metformin, on hepatic gluconeogenesis are also considered. We conclude that the main effect of AMPK activation pertinent to the control of hepatic gluconeogenesis is to antagonize glucagon signalling in the short-term and, in the long-term, to improve insulin sensitivity by reducing hepatic lipid content.


Subject(s)
Diabetes Mellitus, Type 2 , Gluconeogenesis , Humans , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Hypoglycemic Agents/pharmacology , Blood Glucose , Liver/metabolism , Glucose/metabolism
4.
Biochem J ; 479(12): 1317-1336, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35670459

ABSTRACT

Pharmacological AMPK activation represents an attractive approach for the treatment of type 2 diabetes (T2D). AMPK activation increases skeletal muscle glucose uptake, but there is controversy as to whether AMPK activation also inhibits hepatic glucose production (HGP) and pharmacological AMPK activators can have off-target effects that contribute to their anti-diabetic properties. The main aim was to investigate the effects of 991 and other direct AMPK activators on HGP and determine whether the observed effects were AMPK-dependent. In incubated hepatocytes, 991 substantially decreased gluconeogenesis from lactate, pyruvate and glycerol, but not from other substrates. Hepatocytes from AMPKß1-/- mice had substantially reduced liver AMPK activity, yet the inhibition of glucose production by 991 persisted. Also, the glucose-lowering effect of 991 was still seen in AMPKß1-/- mice subjected to an intraperitoneal pyruvate tolerance test. The AMPK-independent mechanism by which 991 treatment decreased gluconeogenesis could be explained by inhibition of mitochondrial pyruvate uptake and inhibition of mitochondrial sn-glycerol-3-phosphate dehydrogenase-2. However, 991 and new-generation direct small-molecule AMPK activators antagonized glucagon-induced gluconeogenesis in an AMPK-dependent manner. Our studies support the notion that direct pharmacological activation of hepatic AMPK as well as inhibition of pyruvate uptake could be an option for the treatment of T2D-linked hyperglycemia.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glucagon/metabolism , Gluconeogenesis , Glucose/metabolism , Lactic Acid/metabolism , Liver/metabolism , Mice , Pyruvic Acid/metabolism
5.
Biochem J ; 478(21): 3869-3889, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34668531

ABSTRACT

The effects of small-molecule AMP-activated protein kinase (AMPK) activators in rat epididymal adipocytes were compared. SC4 was the most effective and submaximal doses of SC4 and 5-amino-4-imidazolecarboxamide (AICA) riboside were combined to study the effects of AMPK activation in white adipose tissue (WAT). Incubation of rat adipocytes with SC4 + AICA riboside inhibited noradrenaline-induced lipolysis and decreased hormone-sensitive lipase (HSL) Ser563 phosphorylation, without affecting HSL Ser565 phosphorylation. Preincubation of fat pads from wild-type (WT) mice with SC4 + AICA riboside inhibited insulin-stimulated lipogenesis from glucose or acetate and these effects were lost in AMPKα1 knockout (KO) mice, indicating AMPKα1 dependency. Moreover, in fat pads from acetyl-CoA carboxylase (ACC)1/2 S79A/S212A double knockin versus WT mice, the effect of SC4 + AICA riboside to inhibit insulin-stimulated lipogenesis from acetate was lost, pinpointing ACC as the main AMPK target. Treatment with SC4 + AICA riboside decreased insulin-stimulated glucose uptake, an effect that was still observed in fat pads from AMPKα1 KO versus WT mice, suggesting the effect was partly AMPKα1-independent. SC4 + AICA riboside treatment had no effect on the insulin-induced increase in palmitate esterification nor on sn-glycerol-3-phosphate-O-acyltransferase activity. Therefore in WAT, AMPK activation inhibits noradrenaline-induced lipolysis and suppresses insulin-stimulated lipogenesis primarily by inactivating ACC and by inhibiting glucose uptake.


Subject(s)
AMP-Activated Protein Kinase Kinases/metabolism , Adipose Tissue, White/metabolism , Lipogenesis , Peptide Fragments/pharmacology , Adipocytes , Animals , Cells, Cultured , Male , Mice , Mice, Knockout , Rats , Rats, Wistar
7.
Am J Physiol Endocrinol Metab ; 319(3): E459-E471, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32663099

ABSTRACT

Insulin resistance in obesity and type 2 diabetes has been shown to be associated with decreased de novo fatty acid (FA) synthesis in adipose tissue. It is known that insulin can acutely stimulate FA synthesis in adipocytes; however, the mechanisms underlying this effect are unclear. The rate-limiting step in FA synthesis is catalyzed by acetyl-CoA carboxylase (ACC), known to be regulated through inhibitory phosphorylation at S79 by the AMP-activated protein kinase (AMPK). Previous results from our laboratory showed an inhibition of AMPK activity by insulin, which was accompanied by PKB-dependent phosphorylation of AMPK at S485. However, whether the S485 phosphorylation is required for insulin-induced inhibition of AMPK or other mechanisms underlie the reduced kinase activity is not known. To investigate this, primary rat adipocytes were transduced with a recombinant adenovirus encoding AMPK-WT or a nonphosphorylatable AMPK S485A mutant. AMPK activity measurements by Western blot analysis and in vitro kinase assay revealed that WT and S485A AMPK were inhibited to a similar degree by insulin, indicating that AMPK S485 phosphorylation is not required for insulin-induced AMPK inhibition. Further analysis suggested an involvement of decreased AMP-to-ATP ratios in the insulin-induced inhibition of AMPK activity, whereas a possible contribution of phosphodiesterases was excluded. Furthermore, we show that insulin-induced AMPK S485 phosphorylation also occurs in human adipocytes, suggesting it to be of an importance yet to be revealed. Altogether, this study increases our understanding of how insulin regulates AMPK activity, and with that, FA synthesis, in adipose tissue.


Subject(s)
AMP-Activated Protein Kinases/antagonists & inhibitors , Adipocytes/drug effects , Adipocytes/enzymology , Insulin/pharmacology , AMP-Activated Protein Kinases/genetics , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Adipocytes/metabolism , Animals , Energy Metabolism/drug effects , Fatty Acids/metabolism , Glycerol/metabolism , Mutation , Phosphoric Diester Hydrolases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley
8.
Biochem J ; 477(8): 1373-1389, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32215608

ABSTRACT

We investigated acute effects of two allosteric protein kinase B (PKB) inhibitors, MK-2206 and Akti-1/2, on insulin-stimulated lipogenesis in rat epididymal adipocytes incubated with fructose as carbohydrate substrate. In parallel, the phosphorylation state of lipogenic enzymes in adipocytes and incubated epididymal fat pads was monitored by immunoblotting. Preincubation of rat epididymal adipocytes with PKB inhibitors dose-dependently inhibited the following: insulin-stimulated lipogenesis, increased PKB Ser473 phosphorylation, increased PKB activity and decreased acetyl-CoA carboxylase (ACC) Ser79 phosphorylation. In contrast, the effect of insulin to decrease the phosphorylation of pyruvate dehydrogenase (PDH) at Ser293 and Ser300 was not abolished by PKB inhibition. Insulin treatment also induced ATP-citrate lyase (ACL) Ser454 phosphorylation, but this effect was less sensitive to PKB inhibitors than ACC dephosphorylation by insulin. In incubated rat epididymal fat pads, Akti-1/2 treatment reversed insulin-induced ACC dephosphorylation, while ACL phosphorylation by insulin was maintained. ACL and ACC purified from white adipose tissue were poor substrates for PKBα in vitro. However, effects of wortmannin and torin, along with Akti-1/2 and MK-2206, on recognized PKB target phosphorylation by insulin were similar to their effects on insulin-induced ACL phosphorylation, suggesting that PKB could be the physiological kinase for ACL phosphorylation by insulin. In incubated epididymal fat pads from wild-type versus ACC1/2 S79A/S212A knockin mice, effects of insulin to increase lipogenesis from radioactive fructose or from radioactive acetate were reduced but not abolished. Together, the results support a key role for PKB in mediating insulin-stimulated lipogenesis by decreasing ACC phosphorylation, but not by decreasing PDH phosphorylation.


Subject(s)
Adipose Tissue, White/drug effects , Benzylamines/administration & dosage , Heterocyclic Compounds, 3-Ring/administration & dosage , Insulin/metabolism , Lipogenesis/drug effects , Protein Kinase Inhibitors/administration & dosage , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Quinoxalines/administration & dosage , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Adipocytes/drug effects , Adipocytes/enzymology , Adipocytes/metabolism , Adipose Tissue, White/enzymology , Adipose Tissue, White/metabolism , Animals , Male , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Wistar
9.
Nature ; 578(7796): 605-609, 2020 02.
Article in English | MEDLINE | ID: mdl-32051584

ABSTRACT

The activation of adenosine monophosphate-activated protein kinase (AMPK) in skeletal muscle coordinates systemic metabolic responses to exercise1. Autophagy-a lysosomal degradation pathway that maintains cellular homeostasis2-is upregulated during exercise, and a core autophagy protein, beclin 1, is required for AMPK activation in skeletal muscle3. Here we describe a role for the innate immune-sensing molecule Toll-like receptor 9 (TLR9)4, and its interaction with beclin 1, in exercise-induced activation of AMPK in skeletal muscle. Mice that lack TLR9 are deficient in both exercise-induced activation of AMPK and plasma membrane localization of the GLUT4 glucose transporter in skeletal muscle, but are not deficient in autophagy. TLR9 binds beclin 1, and this interaction is increased by energy stress (glucose starvation and endurance exercise) and decreased by a BCL2 mutation3,5 that blocks the disruption of BCL2-beclin 1 binding. TLR9 regulates the assembly of the endolysosomal phosphatidylinositol 3-kinase complex (PI3KC3-C2)-which contains beclin 1 and UVRAG-in skeletal muscle during exercise, and knockout of beclin 1 or UVRAG inhibits the cellular AMPK activation induced by glucose starvation. Moreover, TLR9 functions in a muscle-autonomous fashion in ex vivo contraction-induced AMPK activation, glucose uptake and beclin 1-UVRAG complex assembly. These findings reveal a heretofore undescribed role for a Toll-like receptor in skeletal-muscle AMPK activation and glucose metabolism during exercise, as well as unexpected crosstalk between this innate immune sensor and autophagy proteins.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Beclin-1/metabolism , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology , Toll-Like Receptor 9/metabolism , Animals , Autophagy , Enzyme Activation , Exercise , Glucose/metabolism , Humans , Male , Mice , Models, Animal , Muscle, Skeletal/enzymology , Phosphatidylinositol 3-Kinase/metabolism , Toll-Like Receptor 9/deficiency , Toll-Like Receptor 9/genetics , Tumor Suppressor Proteins/metabolism
10.
Biochem J ; 476(24): 3687-3704, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31782497

ABSTRACT

Root extracts of a Cameroon medicinal plant, Dorstenia psilurus, were purified by screening for AMP-activated protein kinase (AMPK) activation in incubated mouse embryo fibroblasts (MEFs). Two isoprenylated flavones that activated AMPK were isolated. Compound 1 was identified as artelasticin by high-resolution electrospray ionization mass spectrometry and 2D-NMR while its structural isomer, compound 2, was isolated for the first time and differed only by the position of one double bond on one isoprenyl substituent. Treatment of MEFs with purified compound 1 or compound 2 led to rapid and robust AMPK activation at low micromolar concentrations and increased the intracellular AMP:ATP ratio. In oxygen consumption experiments on isolated rat liver mitochondria, compound 1 and compound 2 inhibited complex II of the electron transport chain and in freeze-thawed mitochondria succinate dehydrogenase was inhibited. In incubated rat skeletal muscles, both compounds activated AMPK and stimulated glucose uptake. Moreover, these effects were lost in muscles pre-incubated with AMPK inhibitor SBI-0206965, suggesting AMPK dependency. Incubation of mouse hepatocytes with compound 1 or compound 2 led to AMPK activation, but glucose production was decreased in hepatocytes from both wild-type and AMPKß1-/- mice, suggesting that this effect was not AMPK-dependent. However, when administered intraperitoneally to high-fat diet-induced insulin-resistant mice, compound 1 and compound 2 had blood glucose-lowering effects. In addition, compound 1 and compound 2 reduced the viability of several human cancer cells in culture. The flavonoids we have identified could be a starting point for the development of new drugs to treat type 2 diabetes.


Subject(s)
Blood Glucose/drug effects , Flavonoids/chemistry , Flavonoids/pharmacology , Gluconeogenesis/drug effects , Glucose/metabolism , Moraceae/chemistry , AMP-Activated Protein Kinase Kinases , Animals , Cell-Free System , Enzyme Activation/drug effects , Fibroblasts/drug effects , Male , Mice , Protein Kinases/metabolism , Rats , Rats, Wistar
11.
Biochem J ; 476(16): 2427-2447, 2019 08 30.
Article in English | MEDLINE | ID: mdl-31416829

ABSTRACT

Most fatty acids (FAs) are straight chains and are synthesized by fatty acid synthase (FASN) using acetyl-CoA and malonyl-CoA units. Yet, FASN is known to be promiscuous as it may use methylmalonyl-CoA instead of malonyl-CoA and thereby introduce methyl-branches. We have recently found that the cytosolic enzyme ECHDC1 degrades ethylmalonyl-CoA and methylmalonyl-CoA, which presumably result from promiscuous reactions catalyzed by acetyl-CoA carboxylase on butyryl- and propionyl-CoA. Here, we tested the hypothesis that ECHDC1 is a metabolite repair enzyme that serves to prevent the formation of methyl- or ethyl-branched FAs by FASN. Using the purified enzyme, we found that FASN can incorporate not only methylmalonyl-CoA but also ethylmalonyl-CoA, producing methyl- or ethyl-branched FAs. Using a combination of gas-chromatography and liquid chromatography coupled to mass spectrometry, we observed that inactivation of ECHDC1 in adipocytes led to an increase in several methyl-branched FAs (present in different lipid classes), while its overexpression reduced them below wild-type levels. In contrast, the formation of ethyl-branched FAs was observed almost exclusively in ECHDC1 knockout cells, indicating that ECHDC1 and the low activity of FASN toward ethylmalonyl-CoA efficiently prevent their formation. We conclude that ECHDC1 performs a typical metabolite repair function by destroying methyl- and ethylmalonyl-CoA. This reduces the formation of methyl-branched FAs and prevents the formation of ethyl-branched FAs by FASN. The identification of ECHDC1 as a key modulator of the abundance of methyl-branched FAs opens the way to investigate their function.


Subject(s)
Acyl Coenzyme A/metabolism , Fatty Acid Synthase, Type I/metabolism , Fatty Acids/biosynthesis , 3T3-L1 Cells , Acyl Coenzyme A/genetics , Animals , Decarboxylation , Fatty Acid Synthase, Type I/genetics , Fatty Acids/genetics , Mice
12.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(7): 1017-1030, 2019 07.
Article in English | MEDLINE | ID: mdl-30953761

ABSTRACT

NLRP3 inflammasome plays a key role in Western diet-induced systemic inflammation and was recently shown to mediate long-lasting trained immunity in myeloid cells. Saturated fatty acids (SFAs) are sterile triggers able to induce the assembly of the NLRP3 inflammasome in macrophages, leading to IL-1ß secretion while unsaturated ones (UFAs) prevent SFAs-mediated NLRP3 activation. Unlike previous studies using LPS-primed bone marrow derived macrophages, we do not see any ROS or IRE-1α involvement in SFAs-mediated NLRP3 activation in human monocytes-derived macrophages. Rather we show that SFAs need to enter the cells and to be activated into acyl-CoA to lead to NLRP3 activation in human macrophages. However, their ß-oxidation is dispensable. Instead, they are channeled towards phospholipids but redirected towards lipid droplets containing triacylglycerol in the presence of UFAs. Lipidomic analyses and Laurdan fluorescence experiments demonstrate that SFAs induce a dramatic saturation of phosphatidylcholine (PC) correlated with a loss of membrane fluidity, both events inhibited by UFAs. The silencing of CCTα, the key enzyme in PC synthesis, prevents SFA-mediated NLRP3 activation, demonstrating the essential role of the de novo PC synthesis. This SFA-induced membrane remodeling promotes a disruption of the plasma membrane Na, K-ATPase, instigating a K+ efflux essential and sufficient for NLRP3 activation. This work opens novel therapeutic avenues to interfere with Western diet-associated diseases such as those targeting the glycerolipid pathway.


Subject(s)
Fatty Acids/metabolism , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Potassium/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Biological Transport , Cells, Cultured , Humans , Inflammasomes/metabolism , Phospholipids/metabolism
13.
Mol Genet Metab ; 126(4): 377-387, 2019 04.
Article in English | MEDLINE | ID: mdl-30803894

ABSTRACT

We previously investigated whether inhibition of AMP-metabolizing enzymes could enhance AMP-activated protein kinase (AMPK) activation in skeletal muscle for the treatment of type 2 diabetes. Soluble 5'-nucleotidase II (NT5C2) hydrolyzes IMP and its inhibition could potentially lead to a rise in AMP to activate AMPK. In the present study, we investigated effects of NT5C2 deletion in mice fed a normal-chow diet (NCD) or a high-fat diet (HFD). On a NCD, NT5C2 deletion did not result in any striking metabolic phenotype. On a HFD however, NT5C2 knockout (NT5C2-/-) mice displayed reduced body/fat weight gain, improved glucose tolerance, reduced plasma insulin, triglyceride and uric acid levels compared with wild-type (WT) mice. There was a tendency towards smaller and fewer adipocytes in epididymal fat from NT5C2-/- mice compared to WT mice, consistent with a reduction in triglyceride content. Differences in fat mass under HFD could not be explained by changes in mRNA expression profiles of epididymal fat from WT versus NT5C2-/- mice. However, rates of lipolysis tended to increase in epididymal fat pads from NT5C2-/- versus WT mice, which might explain reduced fat mass. In incubated skeletal muscles, insulin-stimulated glucose uptake and associated signalling were enhanced in NT5C2-/- versus WT mice on HFD, which might contribute towards improved glycemic control. In summary, NT5C2 deletion in mice protects against HFD-induced weight gain, adiposity, insulin resistance and associated hyperglycemia.


Subject(s)
5'-Nucleotidase/genetics , Diet, High-Fat/adverse effects , Gene Deletion , Insulin Resistance , Weight Gain , Animals , Glucose/metabolism , Lipolysis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/metabolism , Obesity/genetics , Obesity/prevention & control
14.
Cell Chem Biol ; 25(6): 728-737.e9, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29657085

ABSTRACT

The AMP-activated protein kinase (AMPK) αßγ heterotrimer regulates cellular energy homeostasis with tissue-specific isoform distribution. Small-molecule activation of skeletal muscle α2ß2 AMPK complexes may prove a valuable treatment strategy for type 2 diabetes and insulin resistance. Herein, we report the small-molecule SC4 is a potent, direct AMPK activator that preferentially activates α2 complexes and stimulates skeletal muscle glucose uptake. In parallel with the term secretagog, we propose "importagog" to define a substance that induces or augments cellular uptake of another substance. Three-dimensional structures of the glucose importagog SC4 bound to activated α2ß2γ1 and α2ß1γ1 complexes reveal binding determinants, in particular a key interaction between the SC4 imidazopyridine 4'-nitrogen and ß2-Asp111, which provide a design paradigm for ß2-AMPK therapeutics. The α2ß2γ1/SC4 structure reveals an interaction between a ß2 N-terminal α helix and the α2 autoinhibitory domain. Our results provide a structure-function guide to accelerate development of potent, but importantly tissue-specific, ß2-AMPK therapeutics.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Benzoates/pharmacology , Glucose/metabolism , Muscle, Skeletal/drug effects , Pyridines/pharmacology , Small Molecule Libraries/pharmacology , Animals , Benzoates/chemical synthesis , Benzoates/chemistry , COS Cells , Cell Line , Chlorocebus aethiops , Crystallography, X-Ray , Enzyme Activation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Molecular , Molecular Structure , Muscle, Skeletal/metabolism , Pyridines/chemical synthesis , Pyridines/chemistry , Rats , Rats, Wistar , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry
15.
Cell Signal ; 44: 158-170, 2018 04.
Article in English | MEDLINE | ID: mdl-29355710

ABSTRACT

The HMG-box protein 1 (HBP1) is a transcriptional regulator and a potential tumor suppressor that controls cell proliferation, differentiation and oncogene-mediated senescence. In a previous study, we showed that AKT activation through the PI3K/AKT/FOXO pathway represses HBP1 expression at the transcriptional level in human fibroblasts as well as in cancer cell lines. In the present study, we investigated whether AKT could also regulate HBP1 directly. First, AKT1 phosphorylated recombinant human HBP1 in vitro on three conserved sites, Ser380, Thr484 and Ser509. In living cells, we confirmed the phosphorylation of HBP1 on residues 380 and 509 using phospho-specific antibodies. HBP1 phosphorylation was induced by growth factors, such as EGF or IGF-1, which activated AKT. Conversely, it was blocked by treatment of cells with an AKT inhibitor (MK-2206) or by AKT knockdown. Next, we observed that HBP1 transcriptional activity was strongly modified by mutating its phosphorylation sites. The regulation of target genes such as DNMT1, P47phox, p16INK4A and cyclin D1 was also affected. HBP1 had previously been shown to limit glioma cell growth. Accordingly, HBP1 silencing by small-hairpin RNA increased human glioblastoma cell proliferation. Conversely, HBP1 overexpression decreased cell growth and foci formation. This effect was amplified by mutations that prevented phosphorylation by AKT, and blunted by mutations that mimicked phosphorylation. In conclusion, our results suggest that HBP1 phosphorylation by AKT blocks its functions as transcriptional regulator and tumor suppressor.


Subject(s)
Glioblastoma/metabolism , High Mobility Group Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Repressor Proteins/metabolism , Cell Proliferation/genetics , Cellular Senescence/genetics , Epidermal Growth Factor/metabolism , Glioblastoma/genetics , HEK293 Cells , Humans , Insulin-Like Growth Factor I/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , Transcription, Genetic
16.
Physiol Genomics ; 49(9): 462-472, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28698229

ABSTRACT

Mammalian hibernation is characterized by metabolic rate depression and a strong decrease in core body temperature that together create energy savings such that most species do not have to eat over the winter months. Brown adipose tissue (BAT), a thermogenic tissue that uses uncoupled mitochondrial respiration to generate heat instead of ATP, plays a major role in rewarming from deep torpor. In the present study we developed a label-free liquid chromatography mass spectrometry (LC-MS) strategy to investigate both differential protein expression and protein phosphorylation in BAT extracts from euthermic vs. hibernating ground squirrels (Ictidomys tridecemlineatus). In particular, we incorporated the filter-assisted sample preparation protocol, which provides a more in-depth analysis compared with gel-based and other LC-MS proteomics approaches. Surprisingly, mitochondrial membrane and matrix protein expression in BAT was largely constant between active euthermic squirrels and their hibernating counterparts. Validation by immunoblotting confirmed that the protein levels of mitochondrial respiratory chain complexes were largely unchanged in hibernating vs. euthermic animals. On the other hand, phosphoproteomics revealed that pyruvate dehydrogenase (PDH) phosphorylation increased during squirrel hibernation, confirmed by immunoblotting with phospho-specific antibodies. PDH phosphorylation leads to its inactivation, which suggests that BAT carbohydrate oxidation is inhibited during hibernation. Phosphorylation of hormone-sensitive lipase (HSL) was also found to increase during hibernation, suggesting that HSL would be active in BAT to produce the fatty acids that are likely the primary fuel for thermogenesis upon arousal. Increased perilipin phosphorylation along with that of a number of other proteins was also revealed, emphasizing the importance of protein phosphorylation as a regulatory mechanism during mammalian hibernation.


Subject(s)
Adipose Tissue, Brown/metabolism , Hibernation/physiology , Phosphoproteins/metabolism , Proteome/metabolism , Sciuridae/physiology , Animals , Chromatography, Liquid , Male , Phosphopeptides/metabolism , Phosphorylation , Proteomics , Tandem Mass Spectrometry
17.
Am J Physiol Endocrinol Metab ; 313(1): E48-E62, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28325731

ABSTRACT

AMP-activated protein kinase (AMPK) plays a key role in energy homeostasis and is activated in response to contraction-induced ATP depletion in skeletal muscle via a rise in intracellular AMP/ADP concentrations. AMP can be deaminated by AMP-deaminase (AMPD) to IMP, which is hydrolyzed to inosine by cytosolic 5'-nucleotidase II (NT5C2). AMP can also be hydrolyzed to adenosine by cytosolic 5'-nucleotidase 1A (NT5C1A). Previous gene silencing and overexpression studies indicated control of AMPK activation by NT5C enzymes. In the present study using gene knockout mouse models, we investigated the effects of NT5C1A and NT5C2 deletion on intracellular adenine nucleotide levels and AMPK activation in electrically stimulated skeletal muscles. Surprisingly, NT5C enzyme knockout did not lead to enhanced AMP or ADP concentrations in response to contraction, with no potentiation of increases in AMPK activity in extensor digitorum longus (EDL) and soleus mouse muscles. Moreover, dual blockade of AMP metabolism in EDL using an AMPD inhibitor combined with NT5C1A deletion did not enhance rises in AMP and ADP or increased AMPK activation by electrical stimulation. The results on muscles from the NT5C knockout mice contradict previous findings where AMP levels and AMPK activity were shown to be modulated by NT5C enzymes.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Muscle Contraction/physiology , Muscle, Skeletal/physiology , 5'-Nucleotidase , Animals , Enzyme Activation , Gene Deletion , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nucleotides/metabolism , Solubility
18.
Cell Signal ; 34: 23-37, 2017 06.
Article in English | MEDLINE | ID: mdl-28235572

ABSTRACT

Proliferating cells depend on glycolysis mainly to supply precursors for macromolecular synthesis. Fructose 2,6-bisphosphate (Fru-2,6-P2) is the most potent positive allosteric effector of 6-phosphofructo-1-kinase (PFK-1), and hence of glycolysis. Mitogen stimulation of rat thymocytes with concanavalin A (ConA) led to time-dependent increases in lactate accumulation (6-fold), Fru-2,6-P2 content (4-fold), 6-phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase isoenzyme 3 and 4 (PFKFB3 and PFKFB4) protein levels (~2-fold and ~15-fold, respectively) and rates of cell proliferation (~40-fold) and protein synthesis (10-fold) after 68h of incubation compared with resting cells. After 54h of ConA stimulation, PFKFB3 mRNA levels were 45-fold higher than those of PFKFB4 mRNA. Although PFKFB3 could be phosphorylated at Ser461 by protein kinase B (PKB) in vitro leading to PFK-2 activation, PFKFB3 Ser461 phosphorylation was barely detectable in resting cells and only increased slightly in ConA-stimulated cells. On the other hand, PFKFB3 and PFKFB4 mRNA levels were decreased (90% and 70%, respectively) by exposure of ConA-stimulated cells to low doses of PKB inhibitor (MK-2206), suggesting control of expression of the two PFKFB isoenzymes by PKB. Incubation of thymocytes with ConA resulted in increased expression and phosphorylation of the translation factors eukaryotic initiation factor-4E-binding protein-1 (4E-BP1) and ribosomal protein S6 (rpS6). Treatment of ConA-stimulated thymocytes with PFK-2 inhibitor (3PO) or MK-2206 led to significant decreases in Fru-2,6-P2 content, medium lactate accumulation and rates of cell proliferation and protein synthesis. These data were confirmed by using siRNA knockdown of PFKFB3, PFKFB4 and PKB α/ß in the more easily transfectable Jurkat E6-1 cell line. The findings suggest that increased PFKFB3 and PFKFB4 expression, but not increased PFKFB3 Ser461 phosphorylation, plays a role in increasing glycolysis in mitogen-stimulated thymocytes and implicate PKB in the upregulation of PFKFB3 and PFKFB4. The results also support a role for Fru-2,6-P2 in coupling glycolysis to cell proliferation and protein synthesis in this model.


Subject(s)
Phosphofructokinase-2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Concanavalin A/pharmacology , Female , Gene Expression/drug effects , Glycolysis/drug effects , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Intracellular Signaling Peptides and Proteins , Jurkat Cells , Phosphofructokinase-2/antagonists & inhibitors , Phosphofructokinase-2/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation/drug effects , Protein Biosynthesis/drug effects , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , Rats , Rats, Wistar , Ribosomal Protein S6/metabolism , Thymocytes/cytology , Thymocytes/drug effects , Thymocytes/metabolism
19.
Nucleic Acids Res ; 44(22): 10539-10553, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27576532

ABSTRACT

Adaptation to fasting involves both Glucocorticoid Receptor (GRα) and Peroxisome Proliferator-Activated Receptor α (PPARα) activation. Given both receptors can physically interact we investigated the possibility of a genome-wide cross-talk between activated GR and PPARα, using ChIP- and RNA-seq in primary hepatocytes. Our data reveal extensive chromatin co-localization of both factors with cooperative induction of genes controlling lipid/glucose metabolism. Key GR/PPAR co-controlled genes switched from transcriptional antagonism to cooperativity when moving from short to prolonged hepatocyte fasting, a phenomenon coinciding with gene promoter recruitment of phosphorylated AMP-activated protein kinase (AMPK) and blocked by its pharmacological inhibition. In vitro interaction studies support trimeric complex formation between GR, PPARα and phospho-AMPK. Long-term fasting in mice showed enhanced phosphorylation of liver AMPK and GRα Ser211. Phospho-AMPK chromatin recruitment at liver target genes, observed upon prolonged fasting in mice, is dampened by refeeding. Taken together, our results identify phospho-AMPK as a molecular switch able to cooperate with nuclear receptors at the chromatin level and reveal a novel adaptation mechanism to prolonged fasting.


Subject(s)
Adenylate Kinase/metabolism , Chromatin/metabolism , PPAR alpha/physiology , Receptors, Glucocorticoid/physiology , Animals , Base Sequence , Binding Sites , Cells, Cultured , Enhancer Elements, Genetic , Fasting , Hepatocytes/metabolism , Lipid Metabolism , Mice, Inbred C57BL , Mice, Knockout , Protein Transport , Sequence Analysis, DNA , Transcriptional Activation , Transcriptome
20.
Am J Physiol Endocrinol Metab ; 311(4): E706-E719, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27577855

ABSTRACT

AMP-activated protein kinase (AMPK) plays diverse roles and coordinates complex metabolic pathways for maintenance of energy homeostasis. This could be explained by the fact that AMPK exists as multiple heterotrimer complexes comprising a catalytic α-subunit (α1 and α2) and regulatory ß (ß1 and ß2)- and γ (γ1, γ2, γ3)-subunits, which are uniquely distributed across different cell types. There has been keen interest in developing specific and isoform-selective AMPK-activating drugs for therapeutic use and also as research tools. Moreover, establishing ways of enhancing cellular AMPK activity would be beneficial for both purposes. Here, we investigated if a recently described potent AMPK activator called 991, in combination with the commonly used activator 5-aminoimidazole-4-carboxamide riboside or contraction, further enhances AMPK activity and glucose transport in mouse skeletal muscle ex vivo. Given that the γ3-subunit is exclusively expressed in skeletal muscle and has been implicated in contraction-induced glucose transport, we measured the activity of AMPKγ3 as well as ubiquitously expressed γ1-containing complexes. We initially validated the specificity of the antibodies for the assessment of isoform-specific AMPK activity using AMPK-deficient mouse models. We observed that a low dose of 991 (5 µM) stimulated a modest or negligible activity of both γ1- and γ3-containing AMPK complexes. Strikingly, dual treatment with 991 and 5-aminoimidazole-4-carboxamide riboside or 991 and contraction profoundly enhanced AMPKγ1/γ3 complex activation and glucose transport compared with any of the single treatments. The study demonstrates the utility of a dual activator approach to achieve a greater activation of AMPK and downstream physiological responses in various cell types, including skeletal muscle.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Benzimidazoles/pharmacology , Benzoates/pharmacology , Enzyme Activators/pharmacology , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Muscle, Skeletal/drug effects , Ribonucleotides/pharmacology , AMP-Activated Protein Kinases/drug effects , Aminoimidazole Carboxamide/pharmacology , Animals , Antibodies, Blocking/pharmacology , Humans , In Vitro Techniques , Isoenzymes , Mice , Mice, Knockout , Muscle Contraction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...