Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Langmuir ; 37(49): 14491-14499, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34851639

ABSTRACT

Due to the compact two-dimensional interlayer pore space and the high density of interlayer molecular adsorption sites, clay minerals are competitive adsorption materials for carbon dioxide capture. We demonstrate that with a decreasing interlayer surface charge in a clay mineral, the adsorption capacity for CO2 increases, while the pressure threshold for adsorption and swelling in response to CO2 decreases. Synthetic nickel-exchanged fluorohectorite was investigated with three different layer charges varying from 0.3 to 0.7 per formula unit of Si4O10F2. We associate the mechanism for the higher CO2 adsorption with more accessible space and adsorption sites for CO2 within the interlayers. The low onset pressure for the lower-charge clay is attributed to weaker cohesion due to the attractive electrostatic forces between the layers. The excess adsorption capacity of the clay is measured to be 8.6, 6.5, and 4.5 wt % for the lowest, intermediate, and highest layer charges, respectively. Upon release of CO2, the highest-layer charge clay retains significantly more CO2. This pressure hysteresis is related to the same cohesion mechanism, where CO2 is first released from the edges of the particles thereby closing exit paths and trapping the molecules in the center of the clay particles.

2.
Chemistry ; 25(9): 2103-2111, 2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30178902

ABSTRACT

The design of microporous hybrid materials, tailored for diverse applications, is a key to address our modern society's imperative of sustainable technologies. Prerequisites are flexible customization of host-guest interactions by incorporating various types of functionality and by adjusting the pore structure. On that score, metal-organic frameworks (MOFs) have been the reference in the past decades. More recently, a new class of microporous hybrid materials emerged, microporous organically pillared layered silicates (MOPS). MOPS are synthesized by simple ion exchange of organic or metal complex cations in synthetic layered silicates. MOFs and MOPSs share the features of "component modularity" and "functional porosity". While both, MOFs and MOPS maintain the intrinsic characteristics of their building blocks, new distinctive properties arise from their assemblage. MOPS are unique since allowing for simultaneous and continuous tuning of micropores in the sub-Ångström range. Consequently, with MOPS the adsorbent recognition may be optimized without the need to explore different framework topologies. Similar to the third generation of MOFs (also termed soft porous crystals), MOPS are structurally ordered, permanently microporous solids that may also show a reversible structural flexibility above a distinct threshold pressure of certain adsorbents. This structural dynamism of MOPS can be utilized by meticulously adjusting the charge density of the silicate layers to the polarizability of the adsorbent leading to different gate opening mechanisms. The potential of MOPS is far from being fully explored. This Concept article highlights the main features of MOPS and illustrates promising directions for further research.

3.
Angew Chem Int Ed Engl ; 57(2): 564-568, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29178514

ABSTRACT

Separation of gas molecules with similar physical and chemical properties is challenging but nevertheless highly relevant for chemical processing. By introducing the elliptically shaped molecule, 1,4-dimethyl-1,4-diazabicyclo[2.2.2]octane, into the interlayer space of a layered silicate, a two-dimensional microporous network with narrow pore size distribution is generated (MOPS-5). The regular arrangement of the pillar molecules in MOPS-5 was confirmed by the occurrence of a 10 band related to a long-range pseudo-hexagonal superstructure of pillar molecules in the interlayer space. Whereas with MOPS-5 for CO2 adsorption, gate-opening occurs at constant volume by freezing pillar rotation, for CO the interlayer space is expanded at gate-opening and a classical interdigitated layer type of gate-opening is observed. The selective nature of the gate-opening might be used for separation of CO and N2 by pressure swing adsorption.

4.
Chem Commun (Camb) ; 53(6): 1072-1075, 2017 Jan 17.
Article in English | MEDLINE | ID: mdl-28044170

ABSTRACT

Adsorption studies in microporous organically pillared layered silicates (MOPS) show that precise control of micropore size in the sub-Ångström range is crucial for chiral discrimination. The highly modular character of MOPS generally allows for an optimization of guest recognition without the need to explore different framework topologies.

5.
J Am Chem Soc ; 139(2): 904-909, 2017 01 18.
Article in English | MEDLINE | ID: mdl-27992224

ABSTRACT

Microporous organically pillared layered silicates (MOPS) are a class of microporous hybrid materials that, by varying pillar density, allows for optimization of guest recognition without the need to explore different framework topologies. MOPS are found to be capable of discriminating two very similar gases, carbon dioxide and acetylene, by selective gate-opening solely through quenching pillar dynamics. Contrary to conventional gate-opening in metal organic frameworks, the additional adsorption capacity is realized without macroscopic volume changes, thus avoiding mechanical stress on the framework. Of the two gases studied, only CO2 can accomplish freezing of pillar dynamics. Moreover, the shape of the slit-type micropores in MOPS can easily be fine-tuned by reducing the charge density of the silicate layers. This concomitantly reduces the Coulomb attraction of cationic interlayer space and anionic host layers. Surprisingly, we found that reducing the charge density then alters the gate-opening mechanism to a conventional structural gate-opening involving an increase in volume.

6.
ACS Appl Mater Interfaces ; 8(38): 25535-43, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27603150

ABSTRACT

Nature reveals a great variety of inorganic-organic composite materials exhibiting good mechanical properties, high thermal and chemical stability, and good barrier properties. One class of natural bio-nanocomposites, e.g. found in mussel shells, comprises protein matrices with layered inorganic fillers. Inspired by such natural bio-nanocomposites, the cationic recombinant spider silk protein eADF4(κ16) was processed together with the synthetic layered silicate sodium hectorite in an all-aqueous setup. Drop-casting of this bio-nanocomposite resulted in a thermally and chemically stable film reflecting a one-dimensional crystal. Surprisingly, this bio-nanocomposite coating was, though produced in an all-aqueous process, completely water insoluble. Analyzing the structural details showed a low inner free volume due to the well-oriented self-assembly/alignment of the spider silk proteins on the nanoclay surface, yielding high oxygen and water vapor barrier properties. The here demonstrated properties in combination with good biocompatibility qualify this new bio-nanocomposite to be used in packaging applications.


Subject(s)
Silk/chemistry , Nanocomposites , Steam , Volatilization , Water
SELECTION OF CITATIONS
SEARCH DETAIL