Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters











Publication year range
1.
Blood ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39172759

ABSTRACT

Extramedullary disease (EMD) is a high-risk feature of multiple myeloma (MM) and remains a poor prognostic factor even in the era of novel immunotherapies. Here we applied spatial transcriptomics (tomo-seq [n=2] and 10X Visium [n=12]), and single-cell RNA sequencing (scRNAseq [n=3]) to a set of 14 EMD biopsies to dissect the three-dimensional architecture of tumor cells and their microenvironment. Overall, the infiltrating immune and stromal cells showed both intra- and inter-patient variation with no uniform distribution over the lesion. We observed substantial heterogeneity at the copy number level within plasma cells, including the emergence of new subclones in circumscribed areas of the tumor, consistent with genomic instability. We further identified spatial expression differences of GPRC5D and TNFRSF17, two important antigens for bispecific antibody therapy. EMD masses were infiltrated by various immune cells, including T-cells. Notably, exhausted TIM3+/PD-1+ T-cells diffusely co-localized with MM cells, whereas functional and activated CD8+ T-cells showed a focal infiltration pattern along with M1 macrophages in otherwise tumor-free regions. This segregation of fit and exhausted T-cells was resolved in the case of response to T-cell engaging bispecific antibodies. MM cells and microenvironment cells were embedded in a complex network that influenced immune activation and angiogenesis, and oxidative phosphorylation represented the major metabolic program within EMD lesions. In summary, spatial transcriptomics has revealed a multicellular ecosystem in EMD with checkpoint inhibition and dual targeting as potential new therapeutic avenues.

2.
mBio ; 15(8): e0073224, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38953353

ABSTRACT

Candida albicans, an opportunistic fungal pathogen, produces the quorum-sensing molecule farnesol, which we have shown alters the transcriptional response and phenotype of human monocyte-derived dendritic cells (DCs), including their cytokine secretion and ability to prime T cells. This is partially dependent on the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ), which has numerous ligands, including the sphingolipid metabolite sphingosine 1-phosphate. Sphingolipids are a vital component of membranes that affect membrane protein arrangement and phagocytosis of C. albicans by DCs. Thus, we quantified sphingolipid metabolites in monocytes differentiating into DCs by High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Farnesol increased the activity of serine palmitoyltransferase, leading to increased levels of 3-keto-dihydrosphingosine, dihydrosphingosine, and dihydrosphingosine 1-phosphate and inhibited dihydroceramide desaturase by inducing oxidative stress, leading to increased levels of dihydroceramide and dihydrosphingomyelin species and reduced ceramide levels. Accumulation of dihydroceramides can inhibit mitochondrial function; accordingly, farnesol reduced mitochondrial respiration. Dihydroceramide desaturase inhibition increases lipid droplet formation, which we observed in farnesol-treated cells, coupled with an increase in intracellular triacylglycerol species. Furthermore, inhibition of dihydroceramide desaturase with either farnesol or specific inhibitors impaired the ability of DCs to prime interferon-γ-producing T cells. The effect of farnesol on sphingolipid metabolism, triacylglycerol synthesis, and mitochondrial respiration was not dependent on PPAR-γ. In summary, our data reveal novel effects of farnesol on sphingolipid metabolism, neutral lipid synthesis, and mitochondrial function in DCs that affect their instruction of T cell cytokine secretion, indicating that C. albicans can manipulate host cell metabolism via farnesol secretion.IMPORTANCECandida albicans is a common commensal yeast, but it is also an opportunistic pathogen which is one of the leading causes of potentially lethal hospital-acquired infections. There is growing evidence that its overgrowth in the gut can influence diseases as diverse as alcohol-associated liver disease and COVID-19. Previously, we found that its quorum-sensing molecule, farnesol, alters the phenotype of dendritic cells differentiating from monocytes, impairing their ability to drive protective T cell responses. Here, we demonstrate that farnesol alters the metabolism of sphingolipids, important structural components of the membrane that also act as signaling molecules. In monocytes differentiating to dendritic cells, farnesol inhibited dihydroceramide desaturase, resulting in the accumulation of dihydroceramides and a reduction in ceramide levels. Farnesol impaired mitochondrial respiration, known to occur with an accumulation of dihydroceramides, and induced the accumulation of triacylglycerol and oil bodies. Inhibition of dihydroceramide desaturase resulted in the impaired ability of DCs to induce interferon-γ production by T cells. Thus, farnesol production by C. albicans could manipulate the function of dendritic cells by altering the sphingolipidome.


Subject(s)
Candida albicans , Dendritic Cells , Farnesol , Monocytes , Quorum Sensing , Sphingolipids , Farnesol/pharmacology , Farnesol/metabolism , Humans , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Dendritic Cells/immunology , Candida albicans/drug effects , Candida albicans/metabolism , Sphingolipids/metabolism , Quorum Sensing/drug effects , Monocytes/metabolism , Monocytes/drug effects , Monocytes/microbiology , Monocytes/immunology , PPAR gamma/metabolism , PPAR gamma/genetics , Tandem Mass Spectrometry , Cytokines/metabolism
3.
Br J Haematol ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719214

ABSTRACT

Biomarkers for cytopenias following CAR T-cell treatment in relapsed/refractory (RR) multiple myeloma (MM) are not completely defined. We prospectively analysed 275 sequential peripheral blood (PB) samples from 58 RRMM patients treated with BCMA-targeted CAR T cells, and then divided them into three groups: (i) baseline (before leukapheresis), (ii) ≤day+30, and (iii) >day+30 after CAR T-cell therapy. We evaluated laboratory data and performed flow cytometry to determine the (CAR) T-cell subsets. Baseline hyperferritinaemia was a risk factor for long-lasting grade ≥3 anaemia (r = 0.47, p < 0.001) and thrombocytopenia (r = 0.44, p = 0.002) after CAR T-cell therapy. Low baseline haemoglobin (Hb) and PLT were associated with long-lasting grade ≥3 anaemia (r = -0.56, p < 0.001) and thrombocytopenia (r = -0.44, p = 0.002) respectively. We observed dynamics of CAR-negative T-cell subsets following CAR T-cell infusion. In the late phase after CAR T-cell therapy (>day+30), CD4Tn frequency correlated with anaemia (r = 0.41, p = 0.0014) and lymphocytopenia was related to frequencies of CD8+ T cells (r = 0.72, p < 0.001) and CD8Teff (r = 0.64, p < 0.001). CD4Tcm frequency was correlated with leucocytopenia (r = -0.49, p < 0.001). In summary, preexisting cytopenias and hyperferritinaemia indicated long duration of grade ≥3 post-CAR T-cell cytopenias. Prolonged cytopenia may be related to immune remodelling with a shift in the CAR-negative T-cell subsets following CAR T-cell therapy.

4.
Nat Commun ; 15(1): 1446, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365788

ABSTRACT

In pancreatic ductal adenocarcinoma (PDAC), endogenous MYC is required for S-phase progression and escape from immune surveillance. Here we show that MYC in PDAC cells is needed for the recruitment of the PAF1c transcription elongation complex to RNA polymerase and that depletion of CTR9, a PAF1c subunit, enables long-term survival of PDAC-bearing mice. PAF1c is largely dispensable for normal proliferation and regulation of MYC target genes. Instead, PAF1c limits DNA damage associated with S-phase progression by being essential for the expression of long genes involved in replication and DNA repair. Surprisingly, the survival benefit conferred by CTR9 depletion is not due to DNA damage, but to T-cell activation and restoration of immune surveillance. This is because CTR9 depletion releases RNA polymerase and elongation factors from the body of long genes and promotes the transcription of short genes, including MHC class I genes. The data argue that functionally distinct gene sets compete for elongation factors and directly link MYC-driven S-phase progression to tumor immune evasion.


Subject(s)
Biochemical Phenomena , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Proto-Oncogene Proteins c-myc , Animals , Mice , Carcinoma, Pancreatic Ductal/pathology , Cell Proliferation , DNA-Directed RNA Polymerases/metabolism , Immune Evasion , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins c-myc/metabolism
5.
Haematologica ; 108(6): 1628-1639, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36727403

ABSTRACT

Optimal carfilzomib dosing is a matter of debate. We analyzed the inhibition profiles of proteolytic proteasome subunits ß5, ß2 and ß1 after low-dose (20/27 mg/m2) versus high-dose (≥36 mg/m2) carfilzomib in 103 pairs of peripheral blood mononuclear cells from patients with relapsed/refractory (RR) multiple myeloma (MM). ß5 activity was inhibited (median inhibition >50%) in vivo by 20 mg/m2, whereas ß2 and ß1 were co-inhibited only by 36 and 56 mg/m2, respectively. Coinhibition of ß2 (P=0.0001) and ß1 activity (P=0.0005) differed significantly between high-dose and low-dose carfilzomib. Subsequently, high-dose carfilzomib showed significantly more effective proteasome inhibition than low-dose carfilzomib in vivo (P=0.0003). We investigated the clinical data of 114 patients treated with carfilzomib combinations. High-dose carfilzomib demonstrated a higher overall response rate (P=0.03) and longer progression-free survival (PFS) (P=0.007) than low-dose carfilzomib. Therefore, we escalated the carfilzomib dose to ≥36 mg/m2 in 16 patients who progressed during low-dose carfilzomib-containing therapies. High-dose carfilzomib recaptured response (≥ partial remission) in nine (56%) patients with a median PFS of 4.4 months. Altogether, we provide the first in vivo evidence in RRMM patients that the molecular activity of high-dose carfilzomib differs from that of low-dose carfilzomib by coinhibition of ß2 and ß1 proteasome subunits and, consequently, high-dose carfilzomib achieves a superior anti-MM effect than low-dose carfilzomib and recaptures the response in RRMM resistant to low-dose carfilzomib. The optimal carfilzomib dose should be ≥36 mg/m2 to reach a sufficient anti-tumor activity, while the balance between efficacy and tolerability should be considered in each patient.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/pathology , Proteasome Endopeptidase Complex , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Leukocytes, Mononuclear , Dexamethasone/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
6.
Cell Death Discov ; 8(1): 505, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36587029

ABSTRACT

Altered features of tumor cells acquired across therapy can result in the survival of treatment-resistant clones that may cause minimal residual disease (MRD). Despite the efficacy of ibrutinib in treating relapsed/refractory mantle cell lymphoma, the obstacle of residual cells contributes to relapses of this mature B-cell neoplasm, and the disease remains incurable. RNA-seq analysis of an ibrutinib-sensitive mantle cell lymphoma cell line following ibrutinib incubation of up to 4 d, corroborated our previously postulated resistance mechanism of a metabolic switch to reliance on oxidative phosphorylation (OXPHOS) in surviving cells. Besides, we had shown that treatment-persisting cells were characterized by increased CD52 expression. Therefore, we hypothesized that combining ibrutinib with another agent targeting these potential escape mechanisms could minimize the risk of survival of ibrutinib-resistant cells. Concomitant use of ibrutinib with OXPHOS-inhibitor IACS-010759 increased toxicity compared to ibrutinib alone. Targeting CD52 was even more efficient, as addition of CD52 mAb in combination with human serum following ibrutinib pretreatment led to rapid complement-dependent-cytotoxicity in an ibrutinib-sensitive cell line. In primary mantle cell lymphoma cells, a higher toxic effect with CD52 mAb was obtained, when cells were pretreated with ibrutinib, but only in an ibrutinib-sensitive cohort. Given the challenge of treating multi-resistant mantle cell lymphoma patients, this work highlights the potential use of anti-CD52 therapy as consolidation after ibrutinib treatment in patients who responded to the BTK inhibitor to achieve MRD negativity and prolong progression-free survival.

7.
JCI Insight ; 7(22)2022 11 22.
Article in English | MEDLINE | ID: mdl-36227687

ABSTRACT

Acute graft versus host disease (aGvHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT) inflicted by alloreactive T cells primed in secondary lymphoid organs (SLOs) and subsequent damage to aGvHD target tissues. In recent years, Treg transfer and/or expansion has emerged as a promising therapy to modulate aGvHD. However, cellular niches essential for fostering Tregs to prevent aGvHD have not been explored. Here, we tested whether and to what extent MHC class II (MHCII) expressed on Ccl19+ fibroblastic reticular cells (FRCs) shape the donor CD4+ T cell response during aGvHD. Animals lacking MHCII expression on Ccl19-Cre-expressing FRCs (MHCIIΔCcl19) showed aberrant CD4+ T cell activation in the effector phase, resulting in exacerbated aGvHD that was associated with significantly reduced expansion of Foxp3+ Tregs and invariant NK T (iNKT) cells. Skewed Treg maintenance in MHCIIΔCcl19 mice resulted in loss of protection from aGvHD provided by adoptively transferred donor Tregs. In contrast, although FRCs upregulated costimulatory surface receptors, and although they degraded and processed exogenous antigens after myeloablative irradiation, FRCs were dispensable to activate alloreactive CD4+ T cells in 2 mouse models of aGvHD. In summary, these data reveal an immunoprotective, MHCII-mediated function of FRC niches in secondary lymphoid organs (SLOs) after allo-HCT and highlight a framework of cellular and molecular interactions that regulate CD4+ T cell alloimmunity.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Mice , Animals , T-Lymphocytes, Regulatory , Mice, Inbred BALB C , Mice, Inbred C57BL , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/methods
8.
Pathologie (Heidelb) ; 43(Suppl 1): 31-35, 2022 Aug.
Article in German | MEDLINE | ID: mdl-36222922

ABSTRACT

BACKGROUND: Ibrutinib improves the treatment of relapsed or refractory mantle cell lymphoma, a mature B cell neoplasm. However, relapses following treatment with this Bruton tyrosine kinase inhibitor occur frequently, and the outcome of affected patients is poor. OBJECTIVES: Single-cell RNA sequencing (scRNA-seq) can track trends in gene expression of mantle cell lymphoma cells across ibrutinib treatment and new therapeutic targets can be defined based on the detected resistance mechanisms. MATERIALS AND METHODS: The ibrutinib-sensitive mantle cell lymphoma cell line REC­1 was treated with ibrutinib for 6 h and 48 h. Droplet-based scRNA-seq was performed to examine the transcriptomic alterations of surviving cells using the 10× Genomics platform. Extracellular flux analysis and flow cytometry were applied to further study the observed adaptations to ibrutinib treatment. RESULTS: REC­1 harbored a subpopulation with potential for crosstalk with microenvironment and therefore greater risk for aggressiveness and drug resistance. Following ibrutinib treatment, NF-κB signaling was turned off. In contrast, the cells upregulated B-cell receptor genes and surface antigens such as CD52, and switched their metabolism to increased dependence on oxidative phosphorylation. CONCLUSIONS: Targeting oxidative phosphorylation or CD52 in combination with or as follow-up to ibrutinib might overcome resistance and provide improved prognosis for mantle cell lymphoma patients.


Subject(s)
Lymphoma, Mantle-Cell , RNA, Small Cytoplasmic , Humans , Agammaglobulinaemia Tyrosine Kinase/genetics , CD52 Antigen , Lymphoma, Mantle-Cell/drug therapy , Neoplasm Recurrence, Local/chemically induced , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Single-Cell Analysis , Tumor Microenvironment/genetics
9.
Nat Cancer ; 3(4): 486-504, 2022 04.
Article in English | MEDLINE | ID: mdl-35469015

ABSTRACT

Disseminated cancer cells frequently lodge near vasculature in secondary organs. However, our understanding of the cellular crosstalk invoked at perivascular sites is still rudimentary. Here, we identify intercellular machinery governing formation of a pro-metastatic vascular niche during breast cancer colonization in the lung. We show that specific secreted factors, induced in metastasis-associated endothelial cells (ECs), promote metastasis in mice by enhancing stem cell properties and the viability of cancer cells. Perivascular macrophages, activated via tenascin C (TNC) stimulation of Toll-like receptor 4 (TLR4), were shown to be crucial in niche activation by secreting nitric oxide (NO) and tumor necrosis factor (TNF) to induce EC-mediated production of niche components. Notably, this mechanism was independent of vascular endothelial growth factor (VEGF), a key regulator of EC behavior and angiogenesis. However, targeting both macrophage-mediated vascular niche activation and VEGF-regulated angiogenesis resulted in added potency to curb lung metastasis in mice. Together, our findings provide mechanistic insights into the formation of vascular niches in metastasis.


Subject(s)
Lung Neoplasms , Macrophages , Tenascin , Animals , Endothelial Cells/metabolism , Lung/blood supply , Lung/metabolism , Lung Neoplasms/blood supply , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Macrophages/metabolism , Macrophages/pathology , Mice , Neovascularization, Pathologic/pathology , Tenascin/metabolism , Vascular Endothelial Growth Factor A/metabolism
10.
Cancer Immunol Res ; 10(4): 482-497, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35362044

ABSTRACT

Communication between tumors and the stroma of tumor-draining lymph nodes (TDLN) exists before metastasis arises, altering the structure and function of the TDLN niche. Transcriptional profiling of fibroblastic reticular cells (FRC), the dominant stromal population of lymph nodes, has revealed that FRCs in TDLNs are reprogrammed. However, the tumor-derived factors driving the changes in FRCs remain to be identified. Taking an unbiased approach, we have shown herein that lactic acid (LA), a metabolite released by cancer cells, was not only secreted by B16.F10 and 4T1 tumors in high amounts, but also that it was enriched in TDLNs. LA supported an upregulation of Podoplanin (Pdpn) and Thy1 and downregulation of IL7 in FRCs of TDLNs, making them akin to activated fibroblasts found at the primary tumor site. Furthermore, we found that tumor-derived LA altered mitochondrial function of FRCs in TDLNs. Thus, our results demonstrate a mechanism by which a tumor-derived metabolite connected with a low pH environment modulates the function of fibroblasts in TDLNs. How lymph node function is perturbed to support cancer metastases remains unclear. The authors show that tumor-derived LA drains to lymph nodes where it modulates the function of lymph node stromal cells, prior to metastatic colonization.


Subject(s)
Lactic Acid , Neoplasms , Fibroblasts , Humans , Lactic Acid/metabolism , Lymph Nodes/pathology , Neoplasms/pathology
11.
Blood Adv ; 5(19): 3794-3798, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34471932

ABSTRACT

T cell-engaging immunotherapies exert unprecedented single-agent activity in multiple myeloma (MM), thereby putting a yet unexplored selective pressure on the clonal architecture. In this study, we report on homozygous BCMA (TNFRSF17) gene deletion after BCMA-targeting T cell-redirecting bispecific antibody therapy in a heavily pretreated MM patient. Loss of BCMA protein expression persisted over subsequent relapses, with no response to treatment with anti-BCMA antibody drug conjugate. In light of the multiple alternative targets that are emerging in addition to BCMA, we extended our analyses to delineate a more complete picture of genetic alterations that may have an impact on immunotherapy targets in MM. We performed whole-genome sequencing and RNA sequencing in 100 MM patients (50 were newly diagnosed; 50 were relapsed/refractory) and identified a significant proportion of patients with aberrations in genes encoding immunotherapy targets; GPRC5D ranked first with 15% heterozygous deletions, followed by CD38 (10%), SDC1 (5%), and TNFRSF17 (4%). Notably, these heterozygous deletions did not lower the expression levels of respective genes, but they may represent a first hit that drives the acquisition of homozygous deletions and subsequent antigen-loss relapse upon targeted immunotherapy. In summary, we show preexisting vulnerability in genes encoding immunotargets before and homozygous deletions after T cell-engaging immunotherapy.


Subject(s)
Antibodies, Bispecific , Multiple Myeloma , B-Cell Maturation Antigen , Humans , Immunotherapy , Multiple Myeloma/genetics , Multiple Myeloma/therapy , T-Lymphocytes
12.
Int J Mol Sci ; 22(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668876

ABSTRACT

Since the approval of ibrutinib for relapsed/refractory mantle cell lymphoma (MCL), the treatment of this rare mature B-cell neoplasm has taken a great leap forward. Despite promising efficacy of the Bruton tyrosine kinase inhibitor, resistance arises inevitably and the underlying mechanisms remain to be elucidated. Here, we aimed to decipher the response of a sensitive MCL cell line treated with ibrutinib using time-resolved single-cell RNA sequencing. The analysis uncovered five subpopulations and their individual responses to the treatment. The effects on the B cell receptor pathway, cell cycle, surface antigen expression, and metabolism were revealed by the computational analysis and were validated by molecular biological methods. The observed upregulation of B cell receptor signaling, crosstalk with the microenvironment, upregulation of CD52, and metabolic reprogramming towards dependence on oxidative phosphorylation favor resistance to ibrutinib treatment. Targeting these cellular responses provide new therapy options in MCL.


Subject(s)
Adenine/analogs & derivatives , Lymphoma, Mantle-Cell/drug therapy , Piperidines/therapeutic use , RNA-Seq , Single-Cell Analysis , Adenine/pharmacology , Adenine/therapeutic use , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks/drug effects , Humans , Lymphoma, Mantle-Cell/genetics , Piperidines/pharmacology , Reproducibility of Results , Time Factors
13.
Nat Immunol ; 21(9): 998-1009, 2020 09.
Article in English | MEDLINE | ID: mdl-32747815

ABSTRACT

Metastasis constitutes the primary cause of cancer-related deaths, with the lung being a commonly affected organ. We found that activation of lung-resident group 2 innate lymphoid cells (ILC2s) orchestrated suppression of natural killer (NK) cell-mediated innate antitumor immunity, leading to increased lung metastases and mortality. Using multiple models of lung metastasis, we show that interleukin (IL)-33-dependent ILC2 activation in the lung is involved centrally in promoting tumor burden. ILC2-driven innate type 2 inflammation is accompanied by profound local suppression of interferon-γ production and cytotoxic function of lung NK cells. ILC2-dependent suppression of NK cells is elaborated via an innate regulatory mechanism, which is reliant on IL-5-induced lung eosinophilia, ultimately limiting the metabolic fitness of NK cells. Therapeutic targeting of IL-33 or IL-5 reversed NK cell suppression and alleviated cancer burden. Thus, we reveal an important function of IL-33 and ILC2s in promoting tumor metastasis via their capacity to suppress innate type 1 immunity.


Subject(s)
Eosinophils/immunology , Killer Cells, Natural/immunology , Lung Neoplasms/immunology , Lung/immunology , Lymphocytes/immunology , Animals , Cell Line, Tumor , Cytotoxicity, Immunologic , Humans , Immune Tolerance , Immunity, Innate , Interleukin-33/metabolism , Interleukin-5/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasm Metastasis , Th2 Cells/immunology
14.
Nat Commun ; 11(1): 3588, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32680985

ABSTRACT

Tumors subvert immune cell function to evade immune responses, yet the complex mechanisms driving immune evasion remain poorly understood. Here we show that tumors induce de novo steroidogenesis in T lymphocytes to evade anti-tumor immunity. Using a transgenic steroidogenesis-reporter mouse line we identify and characterize de novo steroidogenic immune cells, defining the global gene expression identity of these steroid-producing immune cells and gene regulatory networks by using single-cell transcriptomics. Genetic ablation of T cell steroidogenesis restricts primary tumor growth and metastatic dissemination in mouse models. Steroidogenic T cells dysregulate anti-tumor immunity, and inhibition of the steroidogenesis pathway is sufficient to restore anti-tumor immunity. This study demonstrates T cell de novo steroidogenesis as a mechanism of anti-tumor immunosuppression and a potential druggable target.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Melanoma/immunology , Steroids/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cholesterol Side-Chain Cleavage Enzyme/genetics , Cholesterol Side-Chain Cleavage Enzyme/immunology , Humans , Immune Evasion , Melanoma/genetics , Melanoma/metabolism , Mice , Mice, Knockout , Steroids/biosynthesis
16.
Cell Rep ; 31(7): 107628, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32433953

ABSTRACT

Here, using single-cell RNA sequencing, we examine the stromal compartment in murine melanoma and draining lymph nodes (LNs) at points across tumor development, providing data at http://www.teichlab.org/data/. Naive lymphocytes from LNs undergo activation and clonal expansion within the tumor, before PD1 and Lag3 expression, while tumor-associated myeloid cells promote the formation of a suppressive niche. We identify three temporally distinct stromal populations displaying unique functional signatures, conserved across mouse and human tumors. Whereas "immune" stromal cells are observed in early tumors, "contractile" cells become more prevalent at later time points. Complement component C3 is specifically expressed in the immune population. Its cleavage product C3a supports the recruitment of C3aR+ macrophages, and perturbation of C3a and C3aR disrupts immune infiltration, slowing tumor growth. Our results highlight the power of scRNA-seq to identify complex interplays and increase stromal diversity as a tumor develops, revealing that stromal cells acquire the capacity to modulate immune landscapes from early disease.


Subject(s)
Melanoma/immunology , Sequence Analysis, RNA/methods , Stromal Cells/metabolism , Tumor Microenvironment/immunology , Animals , Humans , Mice
17.
Nat Commun ; 11(1): 1494, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32198421

ABSTRACT

Metastatic colonization relies on interactions between disseminated cancer cells and the microenvironment in secondary organs. Here, we show that disseminated breast cancer cells evoke phenotypic changes in lung fibroblasts, forming a supportive metastatic niche. Colonization of the lungs confers an inflammatory phenotype in metastasis-associated fibroblasts. Specifically, IL-1α and IL-1ß secreted by breast cancer cells induce CXCL9 and CXCL10 production in lung fibroblasts via NF-κB signaling, fueling the growth of lung metastases. Notably, we find that the chemokine receptor CXCR3, that binds CXCL9/10, is specifically expressed in a small subset of breast cancer cells, which exhibits tumor-initiating ability when co-transplanted with fibroblasts and has high JNK signaling that drives IL-1α/ß expression. Importantly, disruption of the intercellular JNK-IL-1-CXCL9/10-CXCR3 axis reduces metastatic colonization in xenograft and syngeneic mouse models. These data mechanistically demonstrate an essential role for the molecular crosstalk between breast cancer cells and their fibroblast niche in the progression of metastasis.


Subject(s)
Breast Neoplasms/metabolism , Fibroblasts/metabolism , Lung Neoplasms/metabolism , Lung/metabolism , Neoplasm Metastasis , Tumor Microenvironment/physiology , Animals , Breast/metabolism , Breast/pathology , Breast Neoplasms/pathology , Cell Line, Tumor , Chemokine CXCL10/metabolism , Chemokine CXCL9/metabolism , Female , Fibroblasts/pathology , Gene Knockdown Techniques , Humans , Interleukin-1alpha/metabolism , Interleukin-1beta/metabolism , Lung/pathology , Lung Neoplasms/pathology , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Receptors, CXCR3/metabolism , Signal Transduction , Transcriptome , Transplantation, Heterologous
18.
Lab Invest ; 100(7): 928-944, 2020 07.
Article in English | MEDLINE | ID: mdl-32203150

ABSTRACT

The tumor microenvironment is increasingly recognized as key player in cancer progression. Investigating heterotypic interactions between cancer cells and their microenvironment is important for understanding how specific cell types support cancer. Forming the vasculature, endothelial cells (ECs) are a prominent cell type in the microenvironment of both normal and neoplastic breast gland. Here, we sought out to analyze epithelial-endothelial cross talk in the breast using isogenic non-tumorigenic vs. tumorigenic breast epithelial cell lines and primary ECs. The cellular model used here consists of D492, a breast epithelial cell line with stem cell properties, and two isogenic D492-derived EMT cell lines, D492M and D492HER2. D492M was generated by endothelial-induced EMT and is non-tumorigenic while D492HER2 is tumorigenic, expressing the ErbB2/HER2 oncogene. To investigate cellular cross talk, we used both conditioned medium (CM) and 2D/3D co-culture systems. Secretome analysis of D492 cell lines was performed using mass spectrometry and candidate knockdown (KD), and overexpression (OE) was done using siRNA and CRISPRi/CRISPRa technology. D492HER2 directly enhances endothelial network formation and activates a molecular axis in ECs promoting D492HER2 migration and invasion, suggesting an endothelial feedback response. Secretome analysis identified extracellular matrix protein 1 (ECM1) as potential angiogenic inducer in D492HER2. Confirming its involvement, KD of ECM1 reduced the ability of D492HER2-CM to increase endothelial network formation and induce the endothelial feedback, while recombinant ECM1 (rECM1) increased both. Interestingly, NOTCH1 and NOTCH3 expression was upregulated in ECs upon treatment with D492HER2-CM or rECM1 but not by CM from D492HER2 with ECM1 KD. Blocking endothelial NOTCH signaling inhibited the increase in network formation and the ability of ECs to promote D492HER2 migration and invasion. In summary, our data demonstrate that cancer-secreted ECM1 induces a NOTCH-mediated endothelial feedback promoting cancer progression by enhancing migration and invasion. Targeting this interaction may provide a novel possibility to improve cancer treatment.


Subject(s)
Breast Neoplasms/metabolism , Extracellular Matrix Proteins/metabolism , Neoplasm Invasiveness/genetics , Receptor, ErbB-2/metabolism , Tumor Microenvironment/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Extracellular Matrix Proteins/genetics , Female , Humans , Receptor, ErbB-2/genetics
19.
Immunity ; 50(2): 493-504.e7, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30737144

ABSTRACT

Non-lymphoid tissues (NLTs) harbor a pool of adaptive immune cells with largely unexplored phenotype and development. We used single-cell RNA-seq to characterize 35,000 CD4+ regulatory (Treg) and memory (Tmem) T cells in mouse skin and colon, their respective draining lymph nodes (LNs) and spleen. In these tissues, we identified Treg cell subpopulations with distinct degrees of NLT phenotype. Subpopulation pseudotime ordering and gene kinetics were consistent in recruitment to skin and colon, yet the initial NLT-priming in LNs and the final stages of NLT functional adaptation reflected tissue-specific differences. Predicted kinetics were recapitulated using an in vivo melanoma-induction model, validating key regulators and receptors. Finally, we profiled human blood and NLT Treg and Tmem cells, and identified cross-mammalian conserved tissue signatures. In summary, we describe the relationship between Treg cell heterogeneity and recruitment to NLTs through the combined use of computational prediction and in vivo validation.


Subject(s)
Adaptation, Physiological/immunology , Single-Cell Analysis/methods , T-Lymphocytes, Regulatory/immunology , Transcriptome/immunology , Adaptation, Physiological/genetics , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Movement/immunology , Colon/immunology , Colon/metabolism , Humans , Immunologic Memory/genetics , Immunologic Memory/immunology , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Mice, Transgenic , Neoplasms, Experimental/genetics , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Skin/immunology , Skin/metabolism , Spleen/immunology , Spleen/metabolism , T-Lymphocytes, Regulatory/metabolism
20.
Oncogene ; 38(23): 4560-4573, 2019 06.
Article in English | MEDLINE | ID: mdl-30755730

ABSTRACT

Breast cancer is a heterogeneous genetic disease driven by the accumulation of individual mutations per tumor. Whole-genome sequencing approaches have identified numerous genes with recurrent mutations in primary tumors. Although mutations in well characterized tumor suppressors and oncogenes are overrepresented in these sets, the majority of the genetically altered genes have so far unknown roles in breast cancer progression. To improve the basic understanding of the complex disease breast cancer and to potentially identify novel drug targets or regulators of known cancer-driving pathways, we analyzed 86 wild-type genes and 94 mutated variants for their effect on cell growth using a serially constructed panel of MCF7 cell lines. We demonstrate in subsequent experiments that the metal cation transporter CNNM4 regulates growth by induction of apoptosis and identified a tumor suppressive role of complement factor properdin (CFP) in vitro and in vivo. CFP appears to induce the intracellular upregulation of the pro-apoptotic transcription factor DDIT3 which is associated with endoplasmic reticulum-stress response.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cytoskeletal Proteins/metabolism , LIM Domain Proteins/metabolism , Properdin/metabolism , Transcription Factor CHOP/metabolism , Animals , Apoptosis , Cations , Cell Proliferation/drug effects , Cell Survival , Disease Progression , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/drug effects , Female , Gene Expression Profiling , Humans , MCF-7 Cells , Mice , Mice, Inbred NOD , Mice, SCID , Mutation , Neoplasm Transplantation , Phenotype , RNA-Binding Proteins , Sequence Analysis, DNA , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL