Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 10: 2740, 2019.
Article in English | MEDLINE | ID: mdl-31849888

ABSTRACT

With the rise of various multidrug-resistant (MDR) pathogenic bacteria, worldwide health care is under pressure to respond. Conventional antibiotics are failing and the development of novel classes and alternative strategies is a major priority. Antimicrobial peptides (AMPs) cannot only kill MDR bacteria, but also can be used synergistically with conventional antibiotics. We selected 30 short AMPs from different origins and measured their synergy in combination with polymyxin B, piperacillin, ceftazidime, cefepime, meropenem, imipenem, tetracycline, erythromycin, kanamycin, tobramycin, amikacin, gentamycin, and ciprofloxacin. In total, 403 unique combinations were tested against an MDR Pseudomonas aeruginosa isolate (PA910). As a measure of the synergistic effects, fractional inhibitory concentrations (FICs) were determined using microdilution assays with FICs ranges between 0.25 and 2. A high number of combinations between peptides and polymyxin B, erythromycin, and tetracycline were found to be synergistic. Novel variants of indolicidin also showed a high frequency in synergist interaction. Single amino acid substitutions within the peptides can have a very strong effect on the ability to synergize, making it possible to optimize future drugs toward synergistic interaction.

2.
Anal Chim Acta ; 802: 95-102, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24176510

ABSTRACT

Proteinaceous conditioning films (pCFs) are thought to play a key role in microbial adhesion, leading to the fouling of technical and biomedical devices and biofilm formation, which in turn causes material damage or persistent infections, respectively. However, little is definitively known about the process of surface conditioning via proteins. Herein, we demonstrate the potential of quartz crystal microbalance with dissipation coupled to MALDI-ToF mass spectrometry (QCM-D-MALDI) to investigate protein adsorption on different surfaces, enabling both the monitoring of CF formation and the determination of the molecular composition of CFs. After running QCM-D experiments, a subsequent tryptic on chip digestion step allows the identification of the proteins deposited on the sensor chip surface via MALDI-ToF mass spectrometry. Prominent blood plasma proteins, i.e., human serum albumin (HSA), fibrinogen (FG) and fibronectin (FN), were used. Chemically well defined sensor surfaces were prepared, among others, via self-assembled monolayer (SAM) technology. In cases where protein adsorption was observed by QCM-D, the adsorbed proteins were clearly detected and identified using MALDI-ToF/MS for both single-protein solutions of HSA, FG and FN as well as for protein mixtures. However, for equimolar protein mixtures on TiO2 surfaces, only signals attributed to FG and FN were observed in the mass spectra. No signals indicating the presence of HSA could be detected. This finding leads to the assumption that only FG and FN attach to the TiO2 sensor surface under the given experimental conditions.

3.
ACS Appl Mater Interfaces ; 5(14): 6704-11, 2013 Jul 24.
Article in English | MEDLINE | ID: mdl-23777668

ABSTRACT

Biofilms represent a fundamental problem in environmental biology, water technology, food hygiene as well as in medical and technical systems. Recently introduced slippery liquid-infused porous surface (SLIPS) showed great promise for preventing biofilm formation owing to the low surface energy of such surface in combination with its self-cleaning properties. In this study we demonstrated a novel hydrophobic liquid-infused porous poly(butyl methacrylate-co-ethylene dimethacrylate) surface (slippery BMA-EDMA) with bacteria-resistance in BM2 mineral medium and long-term stability in aqueous environments. We showed that the slippery BMA-EDMA surface prevents biofilm formation of different strains of opportunistic pathogen Pseudomonas aeruginosa for at least up to 7 days in low nutrient medium. Only ∼1.8% of the slippery surface was covered by the environmental P. aeruginosa PA49 strain under investigation. In uncoated glass controls the coverage of surfaces reached ∼55% under the same conditions. However, in high nutrient medium, more relevant to physiological conditions, the biofilm formation on the slippery surface turned out to be highly dependent on the bacterial strain. Although the slippery surface could prevent biofilm formation of most of the P. aeruginosa strains tested (∼1% surface coverage), the multiresistant P. aeruginosa strain isolated from wastewater was able to cover up to 12% of the surface during 7 days of incubation. RAPD-PCR analysis of the used P. aeruginosa strains demonstrated their high genome variability, which might be responsible for their difference in biofilm formation on the slippery BMA-EDMA surface. The results show that although the slippery BMA-EDMA surface has a great potential against biofilm formation, the generality of its bacteria resistant properties is still to be improved.


Subject(s)
Anti-Bacterial Agents/chemistry , Polymers/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Adhesion/drug effects , Biofilms/drug effects , DNA, Bacterial/analysis , Hydrophobic and Hydrophilic Interactions , Methacrylates/chemistry , Porosity , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/physiology , Random Amplified Polymorphic DNA Technique , Surface Properties , Wastewater/microbiology
4.
Biofouling ; 27(10): 1073-85, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22047093

ABSTRACT

The impact of increased surface hydrophobicity on biofilms regarding retardation, repulsion, or attraction was studied with hydrophobin modified glass substrata. Recombinantly produced fungal hydrophobins forming self-assembled monolayers were used as the surface coating. The adsorption dynamics of hydrophobins were analysed with a quartz crystal microbalance which showed the surface coating to be rapid and stable. The change of surface wettability was determined by water contact angle measurements and demonstrated an increase in hydrophobicity in range of 60-62°. The homogeneity of the monolayers was demonstrated by immunofluorescence microscopy. Atomic force microscopy was applied to visualise the uniform texture of the coated materials. The hydrophobin coatings had no impact on different biofilms in terms of spatial distribution, cell numbers, and population composition. In consequence, hydrophobicity might not represent an important parameter for biofilm formation. Nevertheless, recombinant hydrophobins are suitable for large scale surface modification and functionalization with bioactive molecules.


Subject(s)
Biofilms/drug effects , Escherichia coli/drug effects , Fungal Proteins/pharmacology , Wettability/drug effects , Adsorption , Bacterial Adhesion/drug effects , Denaturing Gradient Gel Electrophoresis , Recombinant Fusion Proteins/pharmacology
5.
J Bacteriol ; 188(24): 8551-9, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17041055

ABSTRACT

Autotrophic members of the Sulfolobales (Crenarchaeota) contain acetyl-coenzyme A (CoA)/propionyl-CoA carboxylase as the CO2 fixation enzyme and use a modified 3-hydroxypropionate cycle to assimilate CO2 into cell material. In this central metabolic pathway malonyl-CoA, the product of acetyl-CoA carboxylation, is further reduced to 3-hydroxypropionate. Extracts of Metallosphaera sedula contained NADPH-specific malonyl-CoA reductase activity that was 10-fold up-regulated under autotrophic growth conditions. Malonyl-CoA reductase was partially purified and studied. Based on N-terminal amino acid sequencing the corresponding gene was identified in the genome of the closely related crenarchaeum Sulfolobus tokodaii. The Sulfolobus gene was cloned and heterologously expressed in Escherichia coli, and the recombinant protein was purified and studied. The enzyme catalyzes the following reaction: malonyl-CoA + NADPH + H+ --> malonate-semialdehyde + CoA + NADP+. In its native state it is associated with small RNA. Its activity was stimulated by Mg2+ and thiols and inactivated by thiol-blocking agents, suggesting the existence of a cysteine adduct in the course of the catalytic cycle. The enzyme was specific for NADPH (Km = 25 microM) and malonyl-CoA (Km = 40 microM). Malonyl-CoA reductase has 38% amino acid sequence identity to aspartate-semialdehyde dehydrogenase, suggesting a common ancestor for both proteins. It does not exhibit any significant similarity with malonyl-CoA reductase from Chloroflexus aurantiacus. This shows that the autotrophic pathway in Chloroflexus and Sulfolobaceae has evolved convergently and that these taxonomic groups have recruited different genes to bring about similar metabolic processes.


Subject(s)
Lactic Acid/analogs & derivatives , Oxidoreductases/metabolism , Sulfolobaceae/enzymology , Sulfolobus/enzymology , Amino Acid Sequence , Carbon Dioxide/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Lactic Acid/metabolism , Molecular Sequence Data , NADP/metabolism , Oxidoreductases/chemistry , Oxidoreductases/genetics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sulfolobaceae/genetics , Sulfolobaceae/growth & development , Sulfolobus/genetics , Sulfolobus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...