Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Int J Mol Sci ; 25(5)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38474154

ABSTRACT

A comprehensive gene expression investigation requires high-quality RNA extraction, in sufficient amounts for real-time quantitative polymerase chain reaction and next-generation sequencing. In this work, we compared different RNA extraction methods and evaluated different reference genes for gene expression studies in the fetal human inner ear. We compared the RNA extracted from formalin-fixed paraffin-embedded tissue with fresh tissue stored at -80 °C in RNAlater solution and validated the expression stability of 12 reference genes (from gestational week 11 to 19). The RNA from fresh tissue in RNAlater resulted in higher amounts and a better quality of RNA than that from the paraffin-embedded tissue. The reference gene evaluation exhibited four stably expressed reference genes (B2M, HPRT1, GAPDH and GUSB). The selected reference genes were then used to examine the effect on the expression outcome of target genes (OTOF and TECTA), which are known to be regulated during inner ear development. The selected reference genes displayed no differences in the expression profile of OTOF and TECTA, which was confirmed by immunostaining. The results underline the importance of the choice of the RNA extraction method and reference genes used in gene expression studies.


Subject(s)
Gene Expression Profiling , RNA , Humans , Gene Expression Profiling/methods , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Gene Expression , Real-Time Polymerase Chain Reaction
2.
Clin Genet ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553872

ABSTRACT

Exome sequencing (ES) has identified biallelic kinesin family member 12 (KIF12) mutations as underlying neonatal cholestatic liver disease. We collected information on onset and progression of this entity. Among consecutively referred pediatric patients at our centers, diagnostic ES identified 4 patients with novel, biallelic KIF12 variants using the human GRCh38 reference sequence, as KIF12 remains incompletely annotated in the older reference sequence GRCh37. A review of these and of 21 reported patients with KIF12 variants found that presentation with elevated serum transaminase activity in the context of trivial respiratory infection, without clinical features of liver disease, was more common (n = 18) than manifest cholestatic disease progressing rapidly to liver transplantation (LT; n = 7). Onset of liver disease was at age <1 year in 15 patients; LT was more common in this group. Serum gamma-glutamyl transpeptidase activity (GGT) was elevated in all patients, and total bilirubin was elevated in 15 patients. Liver fibrosis or cirrhosis was present in 14 of 18 patients who were biopsied. The 16 different pathogenic variants and 11 different KIF12 genotypes found were not correlated with age of onset or progression to LT. Identification of biallelic pathogenic KIF12 variants distinguishes KIF12-related disease from other entities with elevated GGT.

3.
NPJ Genom Med ; 9(1): 18, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429302

ABSTRACT

CELSR3 codes for a planar cell polarity protein. We describe twelve affected individuals from eleven independent families with bi-allelic variants in CELSR3. Affected individuals presented with an overlapping phenotypic spectrum comprising central nervous system (CNS) anomalies (7/12), combined CNS anomalies and congenital anomalies of the kidneys and urinary tract (CAKUT) (3/12) and CAKUT only (2/12). Computational simulation of the 3D protein structure suggests the position of the identified variants to be implicated in penetrance and phenotype expression. CELSR3 immunolocalization in human embryonic urinary tract and transient suppression and rescue experiments of Celsr3 in fluorescent zebrafish reporter lines further support an embryonic role of CELSR3 in CNS and urinary tract formation.

4.
iScience ; 26(12): 108399, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38047086

ABSTRACT

Precision oncology approaches for patients with colorectal cancer (CRC) continue to lag behind other solid cancers. Functional precision oncology-a strategy that is based on perturbing primary tumor cells from cancer patients-could provide a road forward to personalize treatment. We extend this paradigm to measuring proteome activity landscapes by acquiring quantitative phosphoproteomic data from patient-derived organoids (PDOs). We show that kinase inhibitors induce inhibitor- and patient-specific off-target effects and pathway crosstalk. Reconstruction of the kinase networks revealed that the signaling rewiring is modestly affected by mutations. We show non-genetic heterogeneity of the PDOs and upregulation of stemness and differentiation genes by kinase inhibitors. Using imaging mass-cytometry-based profiling of the primary tumors, we characterize the tumor microenvironment (TME) and determine spatial heterocellular crosstalk and tumor-immune cell interactions. Collectively, we provide a framework for inferring tumor cell intrinsic signaling and external signaling from the TME to inform precision (immuno-) oncology in CRC.

5.
Oncoimmunology ; 12(1): 2261278, 2023.
Article in English | MEDLINE | ID: mdl-38126027

ABSTRACT

Uveal melanoma (UM) is the most common ocular malignancy in adults. Nearly 95% of UM patients carry the mutually exclusive mutations in the homologous genes GNAQ (amino acid change Q209L/Q209P) and GNA11 (aminoacid change Q209L). UM is located in an immunosuppressed organ and does not suffer immunoediting. Therefore, we hypothesize that driver mutations in GNAQ/11 genes could be recognized by the immune system. Genomic and transcriptomic data from primary uveal tumors were collected from the TCGA-UM dataset (n = 80) and used to assess the immunogenic potential for GNAQ/GNA11 Q209L/Q209P mutations using a variety of tools and HLA type information. All prediction tools showed stronger GNAQ/11 Q209L binding to HLA than GNAQ/11 Q209P. The immunogenicity analysis revealed that Q209L is likely to be presented by more than 73% of individuals in 1000 G databases whereas Q209P is only predicted to be presented in 24% of individuals. GNAQ/11 Q209L showed a higher likelihood to be presented by HLA-I molecules than almost all driver mutations analyzed. Finally, samples carrying Q209L had a higher immune-reactive phenotype. Regarding cancer risk, seven HLA genotypes with low Q209L affinity show higher frequency in uveal melanoma patients than in the general population. However, no clear association was found between any HLA genotype and survival. Results suggest a high potential immunogenicity of the GNAQ/11 Q209L variant that could allow the generation of novel therapeutic tools to treat UM like neoantigen vaccinations.


Subject(s)
GTP-Binding Protein alpha Subunits , Uveal Neoplasms , Adult , Humans , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Uveal Neoplasms/genetics , Uveal Neoplasms/therapy , Uveal Neoplasms/metabolism , Mutation , Immunotherapy
6.
Heliyon ; 9(11): e21893, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034686

ABSTRACT

Background: Toll-like receptors (TLRs) play a pivotal role in the immunologic response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Exaggerated inflammatory response of innate immune cells, however, may drive morbidity and death in Coronavirus disease 19 (COVID-19). Objective: We investigated the engagement of SARS-CoV-2 with TLR4 in order to better understand how to tackle hyperinflammation in COVID-19. Methods: We combined RNA-sequencing data of human lung tissue and of bronchoalveolar lavage fluid cells derived from COVID-19 patients with functional studies in human macrophages using SARS-CoV-2 spike proteins and viable SARS-CoV-2. Pharmacological inhibitors as well as gene editing with CRISPR/Cas9 were used to delineate the signalling pathways involved. Results: We found TLR4 to be the most abundantly upregulated TLR in human lung tissue irrespective of the underlying pathology. Accordingly, bronchoalveolar lavage fluid cells from patients with severe COVID-19 showed an NF-κB-pathway dominated immune response, whereas they were mostly defined by type I interferon signalling in moderate COVID-19. Mechanistically, we found the Spike ectodomain, but not receptor binding domain monomer to induce TLR4-dependent inflammation in human macrophages. By using pharmacological inhibitors as well as CRISPR/Cas9 deleted macrophages, we identify SARS-CoV-2 to engage canonical TLR4-MyD88 signalling. Importantly, we demonstrate that TLR4 blockage prevents exaggerated inflammatory responses in human macrophages infected with different SARS-CoV-2 variants, including immune escape variants B.1.1.7.-E484K and B.1.1.529 (omicron). Conclusion: Our study critically extends the current knowledge on TLR-mediated hyperinflammatory responses to SARS-CoV-2 in human macrophages, paving the way for novel approaches to tackle severe COVID-19. Take-home message: Our study combining human lung transcriptomics with functional studies in human macrophages clearly supports the design and development of TLR4 - directed therapeutics to mitigate hyperinflammation in severe COVID-19.

7.
Cancer Discov ; 13(10): 2192-2211, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37489084

ABSTRACT

In colorectal cancers, the tumor microenvironment plays a key role in prognosis and therapy efficacy. Patient-derived tumor organoids (PDTO) show enormous potential for preclinical testing; however, cultured tumor cells lose important characteristics, including the consensus molecular subtypes (CMS). To better reflect the cellular heterogeneity, we established the colorectal cancer organoid-stroma biobank of matched PDTOs and cancer-associated fibroblasts (CAF) from 30 patients. Context-specific phenotyping showed that xenotransplantation or coculture with CAFs improves the transcriptomic fidelity and instructs subtype-specific stromal gene expression. Furthermore, functional profiling in coculture exposed CMS4-specific therapeutic resistance to gefitinib and SN-38 and prognostic expression signatures. Chemogenomic library screening identified patient- and therapy-dependent mechanisms of stromal resistance including MET as a common target. Our results demonstrate that colorectal cancer phenotypes are encrypted in the cancer epithelium in a plastic fashion that strongly depends on the context. Consequently, CAFs are essential for a faithful representation of molecular subtypes and therapy responses ex vivo. SIGNIFICANCE: Systematic characterization of the organoid-stroma biobank provides a resource for context dependency in colorectal cancer. We demonstrate a colorectal cancer subtype memory of PDTOs that is independent of specific driver mutations. Our data underscore the importance of functional profiling in cocultures for improved preclinical testing and identification of stromal resistance mechanisms. This article is featured in Selected Articles from This Issue, p. 2109.


Subject(s)
Cancer-Associated Fibroblasts , Colorectal Neoplasms , Humans , Biological Specimen Banks , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Tumor Cells, Cultured , Cancer-Associated Fibroblasts/metabolism , Organoids/pathology , Tumor Microenvironment/genetics
8.
Nat Cancer ; 4(6): 779-780, 2023 06.
Article in English | MEDLINE | ID: mdl-37308677
9.
RNA ; 29(6): 756-763, 2023 06.
Article in English | MEDLINE | ID: mdl-36889928

ABSTRACT

The addition of chemical groups to cellular RNA to modulate RNA fate and/or function is summarized under the term epitranscriptomic modification. More than 170 different modifications have been identified on cellular RNA, such as tRNA, rRNA and, to a lesser extent, on other RNA types. Recently, epitranscriptomic modification of viral RNA has received considerable attention as a possible additional mechanism regulating virus infection and replication. N6-methyladenosine (m6A) and C5-methylcytosine (m5C) have been most broadly studied in different RNA viruses. Various studies, however, reported varying results with regard to number and extent of the modification. Here we investigated the m5C methylome of SARS-CoV-2, and we reexamined reported m5C sites in HIV and MLV. Using a rigorous bisulfite-sequencing protocol and stringent data analysis, we found no evidence for the presence of m5C in these viruses. The data emphasize the necessity for optimizing experimental conditions and bioinformatic data analysis.


Subject(s)
COVID-19 , HIV Infections , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics , Transcriptome , COVID-19/genetics
10.
J Med Chem ; 65(22): 15165-15173, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36374020

ABSTRACT

Thiopurines are in widespread clinical use for the treatment of immunological disorders and certain cancers. However, treatment failure due to resistance or adverse drug reactions are common, asking for new therapeutic strategies. We investigated the potential of 6-thioguanosine monophosphate (6sGMP) prodrugs to overcome resistance to 6-thioguanine. We successfully developed synthetic routes toward diverse 6sGMP prodrugs, tested their proliferation inhibitory potential in different cell lines, and examined their mode of action. Our results show that 4-acetyloxybenzyl- and cycloSaligenyl-derivatized 6sGMP prodrugs are effective antiproliferative compounds in cells that are resistant to thiopurines. We find that resistance is related to the expression of salvage pathway enzyme HGPRT. Using TUC-seq DUAL, we demonstrate the intracellular conversion of 6sGMP prodrugs into bioactive 6sGTPs. Thus, our study offers a promising strategy for thiopurine therapy by using 6sGMP prodrugs, and it suggests TUC-seq DUAL as a simple and fast method to measure the success of thiopurine therapy.


Subject(s)
Breast Neoplasms , Leukemia , Prodrugs , Humans , Female , Prodrugs/pharmacology , Prodrugs/therapeutic use , Breast Neoplasms/drug therapy , Thioguanine/pharmacology , Thioguanine/metabolism , Purine Nucleosides
11.
Cancer Cell ; 40(12): 1503-1520.e8, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36368318

ABSTRACT

Non-small cell lung cancer (NSCLC) is characterized by molecular heterogeneity with diverse immune cell infiltration patterns, which has been linked to therapy sensitivity and resistance. However, full understanding of how immune cell phenotypes vary across different patient subgroups is lacking. Here, we dissect the NSCLC tumor microenvironment at high resolution by integrating 1,283,972 single cells from 556 samples and 318 patients across 29 datasets, including our dataset capturing cells with low mRNA content. We stratify patients into immune-deserted, B cell, T cell, and myeloid cell subtypes. Using bulk samples with genomic and clinical information, we identify cellular components associated with tumor histology and genotypes. We then focus on the analysis of tissue-resident neutrophils (TRNs) and uncover distinct subpopulations that acquire new functional properties in the tissue microenvironment, providing evidence for the plasticity of TRNs. Finally, we show that a TRN-derived gene signature is associated with anti-programmed cell death ligand 1 (PD-L1) treatment failure.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Neutrophils/metabolism , Tumor Microenvironment , B7-H1 Antigen/metabolism
12.
Bioinformatics ; 38(14): 3665-3667, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35642895

ABSTRACT

SUMMARY: MicroRNAs have been shown to be able to modulate the tumor microenvironment and the immune response and hence could be interesting biomarkers and therapeutic targets in immuno-oncology; however, dedicated analysis tools are missing. Here, we present a user-friendly web platform MIO and a Python toolkit miopy integrating various methods for visualization and analysis of provided or custom bulk microRNA and gene expression data. We include regularized regression and survival analysis and provide information of 40 microRNA target prediction tools as well as a collection of curated immune related gene and microRNA signatures and processed TCGA data including estimations of infiltrated immune cells and the immunophenoscore. The integration of several machine learning methods enables the selection of prognostic and predictive microRNAs and gene interaction network biomarkers. AVAILABILITY AND IMPLEMENTATION: https://mio.icbi.at, https://github.com/icbi-lab/mio and https://github.com/icbi-lab/miopy. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
MicroRNAs , Neoplasms , Humans , Software , MicroRNAs/genetics , Gene Regulatory Networks , Neoplasms/genetics , Machine Learning , Tumor Microenvironment
13.
RSC Chem Biol ; 3(4): 447-455, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35441143

ABSTRACT

Metabolic labeling has emerged as a powerful tool to endow RNA with reactive handles allowing for subsequent chemical derivatization and processing. Recently, thiolated nucleosides, such as 4-thiouridine (4sU), have attracted great interest in metabolic labeling-based RNA sequencing approaches (TUC-seq, SLAM-seq, TimeLapse-seq) to study cellular RNA expression and decay dynamics. For these and other applications (e.g. PAR-CLIP), thus far only the naked nucleoside 4sU has been applied. Here we examined the concept of derivatizing 4sU into a 5'-monophosphate prodrug that would allow for cell permeation and potentially improve labeling efficiency by bypassing the rate-limiting first step of 5' phosphorylation of the nucleoside into the ultimately bioactive 4sU triphosphate (4sUTP). To this end, we developed robust synthetic routes towards diverse 4sU monophosphate prodrugs. Using metabolic labeling assays, we found that most of the newly introduced 4sU prodrugs were well tolerated by the cells. One derivative, the bis(4-acetyloxybenzyl) 5'-monophosphate of 4sU, was also efficiently incorporated into nascent RNA.

14.
Clin Cancer Res ; 28(9): 1863-1870, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35254413

ABSTRACT

PURPOSE: Gene fusions involving R-spondin (RSPOfp) and RNF43 mutations have been shown to drive Wnt-dependent tumor initiation in colorectal cancer. Herein, we aimed to characterize the molecular features of RSPOfp/RNF43 mutated (mut) compared with wild-type (WT) colorectal cancers to gain insights into potential rationales for therapeutic strategies. EXPERIMENTAL DESIGN: A discovery cohort was classified for RSPOfp/RNF43 status using DNA/RNA sequencing and IHC. An independent cohort was used to validate our findings. RESULTS: The discovery cohort consisted of 7,245 colorectal cancer samples. RSPOfp and RNF43 mutations were detected in 1.3% (n = 94) and 6.1% (n = 443) of cases. We found 5 RSPO fusion events that had not previously been reported (e.g., IFNGR1-RSPO3). RNF43-mut tumors were associated with right-sided primary tumors. No RSPOfp tumors had RNF43 mutations. In comparison with WT colorectal cancers, RSPOfp tumors were characterized by a higher frequency of BRAF, BMPR1A, and SMAD4 mutations. APC mutations were observed in only a minority of RSPOfp-positive compared with WT cases (4.4% vs. 81.4%). Regarding RNF43 mutations, a higher rate of KMT2D and BRAF mutations were detectable compared with WT samples. Although RNF43 mutations were associated with a microsatellite instability (MSI-H)/mismatch repair deficiency (dMMR) phenotype (64.3%), and a tumor mutation burden ≥10 mt/Mb (65.8%), RSPOfp was not associated with MSI-H/dMMR. The validation cohort replicated our genetic findings. CONCLUSIONS: This is the largest series of RSPOfp/RNF43-mut colorectal cancers reported to date. Comprehensive molecular analyses asserted the unique molecular landscape associated with RSPO/RNF43 and suggested potential alternative strategies to overcome the low clinical impact of Wnt-targeted agents and immunotherapy.


Subject(s)
Colorectal Neoplasms , Proto-Oncogene Proteins B-raf , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Humans , Microsatellite Instability , Mutation , Proto-Oncogene Proteins B-raf/genetics , Ubiquitin-Protein Ligases/genetics
15.
Bioinformatics ; 38(4): 1131-1132, 2022 01 27.
Article in English | MEDLINE | ID: mdl-34788790

ABSTRACT

SUMMARY: Somatic mutations and gene fusions can produce immunogenic neoantigens mediating anticancer immune responses. However, their computational prediction from sequencing data requires complex computational workflows to identify tumor-specific aberrations, derive the resulting peptides, infer patients' Human Leukocyte Antigen types and predict neoepitopes binding to them, together with a set of features underlying their immunogenicity. Here, we present nextNEOpi (nextflow NEOantigen prediction pipeline) a comprehensive and fully automated bioinformatic pipeline to predict tumor neoantigens from raw DNA and RNA sequencing data. In addition, nextNEOpi quantifies neoepitope- and patient-specific features associated with tumor immunogenicity and response to immunotherapy. AVAILABILITY AND IMPLEMENTATION: nextNEOpi source code and documentation are available at https://github.com/icbi-lab/nextNEOpi. CONTACT: dietmar.rieder@i-med.ac.at or francesca.finotello@uibk.ac.at. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Antigens, Neoplasm/genetics , Peptides/genetics , Sequence Analysis, RNA
16.
Cell Rep ; 37(1): 109769, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34610319

ABSTRACT

The ATP-dependent chromatin remodeling factor CHD1 is essential for the assembly of variant histone H3.3 into paternal chromatin during sperm chromatin remodeling in fertilized eggs. It remains unclear, however, if CHD1 has a similar role in normal diploid cells. Using a specifically tailored quantitative mass spectrometry approach, we show that Chd1 disruption results in reduced H3.3 levels in heads of Chd1 mutant flies. Chd1 deletion perturbs brain chromatin structure in a similar way as H3.3 deletion and leads to global de-repression of transcription. The physiological consequences are reduced food intake, metabolic alterations, and shortened lifespan. Notably, brain-specific CHD1 expression rescues these phenotypes. We further demonstrate a strong genetic interaction between Chd1 and H3.3 chaperone Hira. Thus, our findings establish CHD1 as a factor required for the assembly of H3.3-containing chromatin in adult cells and suggest a crucial role for CHD1 in the brain as a regulator of organismal health and longevity.


Subject(s)
Brain/metabolism , Chromatin/metabolism , DNA-Binding Proteins/genetics , Drosophila Proteins/metabolism , Histones/metabolism , Metabolome/physiology , Transcription Factors/genetics , Animals , Animals, Genetically Modified/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatin/chemistry , Chromatin Assembly and Disassembly , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/metabolism , Drosophila Proteins/deficiency , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Feeding Behavior , Female , Histone Chaperones/genetics , Histone Chaperones/metabolism , Histones/analysis , Longevity , Male , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/deficiency , Transcription Factors/metabolism
17.
Eur Respir J ; 57(4)2021 04.
Article in English | MEDLINE | ID: mdl-33303539

ABSTRACT

BACKGROUND: After the 2002/2003 severe acute respiratory syndrome outbreak, 30% of survivors exhibited persisting structural pulmonary abnormalities. The long-term pulmonary sequelae of coronavirus disease 2019 (COVID-19) are yet unknown, and comprehensive clinical follow-up data are lacking. METHODS: In this prospective, multicentre, observational study, we systematically evaluated the cardiopulmonary damage in subjects recovering from COVID-19 at 60 and 100 days after confirmed diagnosis. We conducted a detailed questionnaire, clinical examination, laboratory testing, lung function analysis, echocardiography and thoracic low-dose computed tomography (CT). RESULTS: Data from 145 COVID-19 patients were evaluated, and 41% of all subjects exhibited persistent symptoms 100 days after COVID-19 onset, with dyspnoea being most frequent (36%). Accordingly, patients still displayed an impaired lung function, with a reduced diffusing capacity in 21% of the cohort being the most prominent finding. Cardiac impairment, including a reduced left ventricular function or signs of pulmonary hypertension, was only present in a minority of subjects. CT scans unveiled persisting lung pathologies in 63% of patients, mainly consisting of bilateral ground-glass opacities and/or reticulation in the lower lung lobes, without radiological signs of pulmonary fibrosis. Sequential follow-up evaluations at 60 and 100 days after COVID-19 onset demonstrated a vast improvement of symptoms and CT abnormalities over time. CONCLUSION: A relevant percentage of post-COVID-19 patients presented with persisting symptoms and lung function impairment along with radiological pulmonary abnormalities >100 days after the diagnosis of COVID-19. However, our results indicate a significant improvement in symptoms and cardiopulmonary status over time.


Subject(s)
COVID-19 , Pulmonary Fibrosis , Humans , Lung/diagnostic imaging , Prospective Studies , SARS-CoV-2
18.
Bioinformatics ; 36(18): 4817-4818, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32614448

ABSTRACT

SUMMARY: Advances in single-cell technologies have enabled the investigation of T-cell phenotypes and repertoires at unprecedented resolution and scale. Bioinformatic methods for the efficient analysis of these large-scale datasets are instrumental for advancing our understanding of adaptive immune responses. However, while well-established solutions are accessible for the processing of single-cell transcriptomes, no streamlined pipelines are available for the comprehensive characterization of T-cell receptors. Here, we propose single-cell immune repertoires in Python (Scirpy), a scalable Python toolkit that provides simplified access to the analysis and visualization of immune repertoires from single cells and seamless integration with transcriptomic data. AVAILABILITY AND IMPLEMENTATION: Scirpy source code and documentation are available at https://github.com/icbi-lab/scirpy. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Computational Biology , Software , Documentation , Receptors, Antigen, T-Cell
19.
Methods Enzymol ; 636: 261-285, 2020.
Article in English | MEDLINE | ID: mdl-32178821

ABSTRACT

Tumor-infiltrating immune cells comprise various cells of the innate and the adaptive immune system, which influence tumor growth and response to immunotherapy by exerting anti- and protumorigenic functions. Therefore, the quantification of tumor immune infiltrates is of paramount importance for cancer immunology and immunotherapy. We recently developed quanTIseq, a computational pipeline for the quantification of immune-cell fractions from bulk RNA sequencing (RNA-seq) data from blood or tumor samples. In this chapter, we show the capabilities of quanTIseq by analyzing two publicly available data sets. In the first example, we demonstrate how quanTIseq can be used to quantify circulating immune cells from preprocessed RNA-seq data and how to validate the results using matched flow cytometry data. In the second example, we analyze raw RNA-seq data from bulk tumor samples of melanoma patients collected before and on-treatment with kinase inhibitors to show how quanTIseq can be used to reveal the immunological effects of targeted and conventional drugs.


Subject(s)
Neoplasms , RNA , Humans , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Neoplasms/genetics , RNA/genetics , Sequence Analysis, RNA
20.
Angew Chem Int Ed Engl ; 59(17): 6881-6886, 2020 04 20.
Article in English | MEDLINE | ID: mdl-31999864

ABSTRACT

Temporal information about cellular RNA populations is essential to understand the functional roles of RNA. We have developed the hydrazine/NH4 Cl/OsO4 -based conversion of 6-thioguanosine (6sG) into A', where A' constitutes a 6-hydrazino purine derivative. A' retains the Watson-Crick base-pair mode and is efficiently decoded as adenosine in primer extension assays and in RNA sequencing. Because 6sG is applicable to metabolic labeling of freshly synthesized RNA and because the conversion chemistry is fully compatible with the conversion of the frequently used metabolic label 4-thiouridine (4sU) into C, the combination of both modified nucleosides in dual-labeling setups enables high accuracy measurements of RNA decay. This approach, termed TUC-seq DUAL, uses the two modified nucleosides in subsequent pulses and their simultaneous detection, enabling mRNA-lifetime evaluation with unprecedented precision.


Subject(s)
Guanosine/analogs & derivatives , Sequence Analysis, RNA/methods , Thionucleosides/chemistry , Base Sequence , Guanosine/chemistry , Hydrazines/chemistry , RNA Stability , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL
...