Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Mater ; 35(42): e2302076, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37247210

ABSTRACT

Transition metal dichalcogenide (TMD) coatings have attracted enormous scientific and industrial interest due to their outstanding tribological behavior. The paradigmatic example is MoS2 , even though selenides and tellurides have demonstrated superior tribological properties. Here, an innovative in operando conversion of Se nanopowders into lubricious 2D selenides, by sprinkling them onto sliding metallic surfaces coated with Mo and W thin films, is described. Advanced material characterization confirms the tribochemical formation of a thin tribofilm containing selenides, reducing the coefficient of friction down to below 0.1 in ambient air, levels typically reached using fully formulated oils. Ab initio molecular dynamics simulations under tribological conditions reveal the atomistic mechanisms that result in the shear-induced synthesis of selenide monolayers from nanopowders. The use of Se nanopowder provides thermal stability and prevents outgassing in vacuum environments. Additionally, the high reactivity of the Se nanopowder with the transition metal coating in the conditions prevailing in the contact interface yields highly reproducible results, making it particularly suitable for the replenishment of sliding components with solid lubricants, avoiding the long-lasting problem of TMD-lubricity degradation caused by environmental molecules. The suggested straightforward approach demonstrates an unconventional and smart way to synthesize TMDs in operando and exploit their friction- and wear-reducing impact.

2.
Molecules ; 27(10)2022 May 18.
Article in English | MEDLINE | ID: mdl-35630698

ABSTRACT

The increased demand for sustainability requires, among others, the development of new materials with enhanced corrosion resistance. Transition metal diborides are exceptional candidates, as they exhibit fascinating mechanical and thermal properties. However, at elevated temperatures and oxidizing atmospheres, their use is limited due to the fact of their inadequate oxidation resistance. Recently, it was found that chromium diboride doped with silicon can overcome this limitation. Further improvement of this protective coating requires detailed knowledge regarding the composition of the forming oxide layer and the change in the composition of the remaining thin film. In this work, an analytical method for the quantitative measurement of depth profiles without using matrix-matched reference materials was developed. Using this approach, based on the recently introduced online-LASIL technique, it was possible to achieve a depth resolution of 240 nm. A further decrease in the ablation rate is possible but demands a more sensitive detection of silicon. Two chromium diboride samples with different Si contents suffering an oxidation treatment were used to demonstrate the capabilities of this technique. The concentration profiles resembled the pathway of the formed oxidation layers as monitored with transmission electron microscopy. The stoichiometry of the oxidation layers differed strongly between the samples, suggesting different processes were taking place. The validity of the LASIL results was cross-checked with several other analytical techniques.

3.
Sci Rep ; 8(1): 9288, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29915228

ABSTRACT

The demand to discover new materials is scientifically as well as industrially a continuously present topic, covering all different fields of application. The recent scientific work on thin film materials has shown, that especially for nitride-based protective coatings, computationally-driven understanding and modelling serves as a reliable trend-giver and can be used for target-oriented experiments. In this study, semi-automated density functional theory (DFT) calculations were used, to sweep across transition metal diborides in order to characterize their structure, phase stability and mechanical properties. We show that early transition metal diborides (TiB2, VB2, etc.) tend to be chemically more stable in the AlB2 structure type, whereas late transition metal diborides (WB2, ReB2, etc.) are preferably stabilized in the W2B5-x structure type. Closely related, we could prove that point defects such as vacancies significantly influence the phase stability and even can reverse the preference for the AlB2 or W2B5-x structure. Furthermore, investigations on the brittle-ductile behavior of the various diborides reveal, that the metastable structures are more ductile than their stable counterparts (WB2, TcB2, etc.). To design thin film materials, e.g. ternary or layered systems, this study is important for application oriented coating development to focus experimental studies on the most perspective systems.

SELECTION OF CITATIONS
SEARCH DETAIL