Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
AAPS J ; 25(4): 60, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37322223

ABSTRACT

Current regulatory guidelines on drug-food interactions recommend an early assessment of food effect to inform clinical dosing instructions, as well as a pivotal food effect study on the to-be-marketed formulation if different from that used in earlier trials. Study waivers are currently only granted for BCS class 1 drugs. Thus, repeated food effect studies are prevalent in clinical development, with the initial evaluation conducted as early as the first-in-human studies. Information on repeated food effect studies is not common in the public domain. The goal of the work presented in this manuscript from the Food Effect PBPK IQ Working Group was to compile a dataset on these studies across pharmaceutical companies and provide recommendations on their conduct. Based on 54 studies collected, we report that most of the repeat food effect studies do not result in meaningful differences in the assessment of the food effect. Seldom changes observed were more than twofold. There was no clear relationship between the change in food effect and the formulation change, indicating that in most cases, once a compound is formulated appropriately within a specific formulation technology, the food effect is primarily driven by inherent compound properties. Representative examples of PBPK models demonstrate that following appropriate validation of the model with the initial food effect study, the models can be applied to future formulations. We recommend that repeat food effect studies should be approached on a case-by-case basis taking into account the totality of the evidence including the use of PBPK modeling.


Subject(s)
Food-Drug Interactions , Models, Biological , Humans , Solubility , Computer Simulation , Food
2.
CPT Pharmacometrics Syst Pharmacol ; 12(5): 610-618, 2023 05.
Article in English | MEDLINE | ID: mdl-36597353

ABSTRACT

This workshop report summarizes the presentations and panel discussion related to the use of physiologically based pharmacokinetic (PBPK) modeling approaches for food effect assessment, collected from Session 2 of Day 2 of the workshop titled "Regulatory Utility of Mechanistic Modeling to Support Alternative Bioequivalence Approaches." The US Food and Drug Administration in collaboration with the Center for Research on Complex Generics organized this workshop where this particular session titled "Oral PBPK for Evaluating the Impact of Food on BE" presented successful cases of PBPK modeling approaches for food effect assessment. Recently, PBPK modeling has started to gain popularity among academia, industries, and regulatory agencies for its potential utility during bioavailability (BA) and/or bioequivalence (BE) studies of new and generic drug products to assess the impact of food on BA/BE. Considering the promises of PBPK modeling in generic drug development, the aim of this workshop session was to facilitate knowledge sharing among academia, industries, and regulatory agencies to understand the knowledge gap and guide the path forward. This report collects and summarizes the information presented and discussed during this session to disseminate the information into a broader audience for further advancement in this area.


Subject(s)
Models, Biological , Research Report , Humans , Therapeutic Equivalency , Biological Availability , Drug Development , Drugs, Generic
3.
AAPS J ; 24(5): 85, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35854202

ABSTRACT

Accurate prediction of human clearance (CL) and volume of distribution at steady state (Vd,ss) for small molecule drug candidates is an essential component of assessing likely efficacious dose and clinical safety margins. In 2021, the IQ Consortium Human PK Prediction Working Group undertook a survey of IQ member companies to understand the current PK prediction methods being used to estimate these parameters across the pharmaceutical industry. The survey revealed a heterogeneity in approaches being used across the industry (e.g., the use of allometric approaches, differing incorporation of binding terms, and inconsistent use of empirical correction factors for in vitro-in vivo extrapolation, IVIVE), which could lead to different PK predictions with the same input data. Member companies expressed an interest in improving human PK predictions by identifying the most appropriate compound-class specific methods, as determined by physiochemical properties and knowledge of CL pathways. Furthermore, there was consensus that increased understanding of the uncertainty inherent to the compound class-dependent prediction would be invaluable in aiding communication of human PK and dose uncertainty at the time of candidate nomination for development. The human PK Prediction Working Group is utilizing these survey findings to help interrogate clinical IV datasets from across the IQ consortium member companies to understand PK prediction accuracy and uncertainty from preclinical datasets.


Subject(s)
Drug Industry , Models, Biological , Humans , Kinetics , Pharmaceutical Preparations
4.
J Pharm Sci ; 110(2): 584-593, 2021 02.
Article in English | MEDLINE | ID: mdl-33058891

ABSTRACT

This workshop report summarizes the proceedings of Day 2 of a three-day workshop on "Current State and Future Expectations of Translational Modeling Strategies toSupportDrug Product Development, Manufacturing Changes and Controls". From a drug product quality perspective, physiologically based biopharmaceutics modeling (PBBM) is a tool to link variations in the drug product quality attributes to in vivo outcomes enabling the establishment of clinically relevant drug product specifications (CRDPS). Day 2 of the workshop focused on best practices in developing, verifying and validating PBBM. This manuscript gives an overview of podium presentations and summarizes breakout (BO) session discussions related to (1) challenges and opportunities for using PBBM to assess the clinical impact of formulation and manufacturing changes on the in vivo performance of a drug product, (2) best practices to account for parameter uncertainty and variability during model development, (3) best practices in the development, verification and validation of PBBM and (4) opportunities and knowledge gaps related to leveraging PBBM for virtual bioequivalence simulations.


Subject(s)
Biopharmaceutics , Research Report , Models, Biological , Solubility , Therapeutic Equivalency
6.
AAPS J ; 22(6): 123, 2020 09 27.
Article in English | MEDLINE | ID: mdl-32981010

ABSTRACT

The effect of food on pharmacokinetic properties of drugs is a commonly observed occurrence affecting about 40% of orally administered drugs. Within the pharmaceutical industry, significant resources are invested to predict and characterize a clinically relevant food effect. Here, the predictive performance of physiologically based pharmacokinetic (PBPK) food effect models was assessed via de novo mechanistic absorption models for 30 compounds using controlled, pre-defined in vitro, and modeling methodology. Compounds for which absorption was known to be limited by intestinal transporters were excluded in this analysis. A decision tree for model verification and optimization was followed, leading to high, moderate, or low food effect prediction confidence. High (within 0.8- to 1.25-fold) to moderate confidence (within 0.5- to 2-fold) was achieved for most of the compounds (15 and 8, respectively). While for 7 compounds, prediction confidence was found to be low (> 2-fold). There was no clear difference in prediction success for positive or negative food effects and no clear relationship to the BCS category of tested drug molecules. However, an association could be demonstrated when the food effect was mainly related to changes in the gastrointestinal luminal fluids or physiology, including fluid volume, motility, pH, micellar entrapment, and bile salts. Considering these findings, it is recommended that appropriately verified mechanistic PBPK modeling can be leveraged with high to moderate confidence as a key approach to predicting potential food effect, especially related to mechanisms highlighted here.


Subject(s)
Food-Drug Interactions , Intestinal Absorption/physiology , Models, Biological , Administration, Oral , Animals , Chemistry, Pharmaceutical , Computer Simulation , Dogs , Drug Liberation/physiology , Humans , Hydrogen-Ion Concentration , Intestinal Mucosa/metabolism , Madin Darby Canine Kidney Cells , Permeability , Solubility
7.
Drug Metab Dispos ; 44(10): 1550-61, 2016 10.
Article in English | MEDLINE | ID: mdl-27493152

ABSTRACT

This study aimed to derive quantitative abundance values for key hepatic transporters suitable for in vitro-in vivo extrapolation within a physiologically based pharmacokinetic modeling framework. A meta-analysis was performed whereby data on abundance measurements, sample preparation methods, and donor demography were collated from the literature. To define values for a healthy Caucasian population, a subdatabase was created whereby exclusion criteria were applied to remove samples from non-Caucasian individuals, those with underlying disease, or those with subcellular fractions other than crude membrane. Where a clinically relevant active genotype was known, only samples from individuals with an extensive transporter phenotype were included. Authors were contacted directly when additional information was required. After removing duplicated samples, the weighted mean, geometric mean, standard deviation, coefficient of variation, and between-study homogeneity of transporter abundances were determined. From the complete database containing 24 transporters, suitable abundance data were available for 11 hepatic transporters from nine studies after exclusion criteria were applied. Organic anion transporting polypeptides OATP1B1 and OATP1B3 showed the highest population abundance in healthy adult Caucasians. For several transporters, the variability in abundance was reduced significantly once the exclusion criteria were applied. The highest variability was observed for OATP1B3 > OATP1B1 > multidrug resistance protein 2 > multidrug resistance gene 1. No relationship was found between transporter expression and donor age. To our knowledge, this study provides the first in-depth analysis of current quantitative abundance data for a wide range of hepatic transporters, with the aim of using these data for in vitro-in vivo extrapolation, and highlights the significance of investigating the background of tissue(s) used in quantitative transporter proteomic studies. Similar studies are now warranted for other ethnicities.


Subject(s)
Liver-Specific Organic Anion Transporter 1/metabolism , Liver/metabolism , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism , White People , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...