Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Alzheimers Res Ther ; 16(1): 102, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725033

ABSTRACT

BACKGROUND: Obstructive sleep apnea (OSA) increases risk for cognitive decline and Alzheimer's disease (AD). While the underlying mechanisms remain unclear, hypoxemia during OSA has been implicated in cognitive impairment. OSA during rapid eye movement (REM) sleep is usually more severe than in non-rapid eye movement (NREM) sleep, but the relative effect of oxyhemoglobin desaturation during REM versus NREM sleep on memory is not completely characterized. Here, we examined the impact of OSA, as well as the moderating effects of AD risk factors, on verbal memory in a sample of middle-aged and older adults with heightened AD risk. METHODS: Eighty-one adults (mean age:61.7 ± 6.0 years, 62% females, 32% apolipoprotein E ε4 allele (APOE4) carriers, and 70% with parental history of AD) underwent clinical polysomnography including assessment of OSA. OSA features were derived in total, NREM, and REM sleep. REM-NREM ratios of OSA features were also calculated. Verbal memory was assessed with the Rey Auditory Verbal Learning Test (RAVLT). Multiple regression models evaluated the relationships between OSA features and RAVLT scores while adjusting for sex, age, time between assessments, education years, body mass index (BMI), and APOE4 status or parental history of AD. The significant main effects of OSA features on RAVLT performance and the moderating effects of AD risk factors (i.e., sex, age, APOE4 status, and parental history of AD) were examined. RESULTS: Apnea-hypopnea index (AHI), respiratory disturbance index (RDI), and oxyhemoglobin desaturation index (ODI) during REM sleep were negatively associated with RAVLT total learning and long-delay recall. Further, greater REM-NREM ratios of AHI, RDI, and ODI (i.e., more events in REM than NREM) were related to worse total learning and recall. We found specifically that the negative association between REM ODI and total learning was driven by adults 60 + years old. In addition, the negative relationships between REM-NREM ODI ratio and total learning, and REM-NREM RDI ratio and long-delay recall were driven by APOE4 carriers. CONCLUSION: Greater OSA severity, particularly during REM sleep, negatively affects verbal memory, especially for people with greater AD risk. These findings underscore the potential importance of proactive screening and treatment of REM OSA even if overall AHI appears low.


Subject(s)
Alzheimer Disease , Polysomnography , Sleep Apnea, Obstructive , Sleep, REM , Humans , Female , Male , Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Alzheimer Disease/complications , Middle Aged , Sleep, REM/physiology , Aged , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/genetics , Risk Factors , Verbal Learning/physiology , Apolipoprotein E4/genetics , Memory/physiology , Severity of Illness Index , Sleep Apnea Syndromes/complications , Sleep Apnea Syndromes/physiopathology , Sleep Apnea Syndromes/genetics
2.
J Psychiatr Res ; 174: 332-339, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697012

ABSTRACT

Electroencephalographic (EEG) deficits in slow wave activity or Delta power (0.5-4 Hz) indicate disturbed sleep homeostasis and are hallmarks of depression. Sleep homeostasis is linked to restorative sleep and potential antidepressant response via non-rapid eye movement (NREM) slow wave sleep (SWS) during which neurons undergo essential repair and rejuvenation. Decreased Low Delta power (0.5-2 Hz) was previously reported in individuals with depression. This study investigated power levels in the Low Delta (0.5-<2 Hz), High Delta (2-4 Hz), and Total Delta (0.5-4 Hz) bands and their association with age, sex, and disrupted sleep in treatment-resistant depression (TRD). Mann-Whitney U tests were used to compare the nightly progressions of Total Delta, Low Delta, and High Delta in 100 individuals with TRD and 24 healthy volunteers (HVs). Polysomnographic parameters were also examined, including Total Sleep Time (TST), Sleep Efficiency (SE), and Wake after Sleep Onset (WASO). Individuals with TRD had lower Delta power during the first NREM episode (NREM1) than HVs. The deficiency was observed in the Low Delta band versus High Delta. Females with TRD had higher Delta power than males during the first NREM1 episode, with the most noticeable sex difference observed in Low Delta. In individuals with TRD, Low Delta power correlated with WASO and SE, and High Delta correlated with WASO. Low Delta power deficits in NREM1 were observed in older males with TRD, but not females. These results provide compelling evidence for a link between age, sex, Low Delta power, sleep homeostasis, and non-restorative sleep in TRD.


Subject(s)
Delta Rhythm , Depressive Disorder, Treatment-Resistant , Electroencephalography , Polysomnography , Humans , Female , Male , Middle Aged , Adult , Depressive Disorder, Treatment-Resistant/physiopathology , Delta Rhythm/physiology , Aged , Sex Characteristics , Young Adult , Sleep Wake Disorders/physiopathology , Sleep/physiology
3.
Res Sq ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38076899

ABSTRACT

Background: Obstructive sleep apnea (OSA) increases risk for cognitive decline and Alzheimer's disease (AD). While the underlying mechanisms remain unclear, hypoxemia during OSA has been implicated in cognitive impairment. OSA during rapid eye movement (REM) sleep is usually more severe than in non-rapid eye movement (NREM) sleep, but the relative effect of oxyhemoglobin desaturation during REM versus NREM sleep on memory is not completely characterized. Here, we examined the impact of OSA, as well as the moderating effects of AD risk factors, on verbal memory in a sample of middle-aged and older adults with heightened AD risk. Methods: Eighty-one adults (mean age:61.7±6.0 years, 62% females, 32% apolipoprotein E ε4 allele (APOE4) carriers, and 70% with parental history of AD) underwent clinical polysomnography including assessment of OSA. OSA features were derived in total, NREM, and REM sleep. REM-NREM ratios of OSA features were also calculated. Verbal memory was assessed with the Rey Auditory Verbal Learning Test (RAVLT). Multiple regression models evaluated the relationships between OSA features and RAVLT scores while adjusting for sex, age, time between assessments, education years, body mass index (BMI), and APOE4 status or parental history of AD. The significant main effects of OSA features on RAVLT performance and the moderating effects of AD risk factors (i.e., sex, age, APOE4 status, and parental history of AD) were examined. Results: Apnea-hypopnea index (AHI), respiratory disturbance index (RDI), and oxyhemoglobin desaturation index (ODI) during REM sleep were negatively associated with RAVLT total learning and long-delay recall. Further, greater REM-NREM ratios of AHI, RDI, and ODI (i.e., more events in REM than NREM) were related to worse total learning and recall. We found specifically that the negative association between REM ODI and total learning was driven by adults 60+ years old. In addition, the negative relationships between REM-NREM ODI ratio and total learning and REM-NREM RDI ratio and long-delay recall were driven by APOE4 carriers. Conclusion: Greater OSA severity, particularly during REM sleep, negatively affects verbal memory, especially for people with greater AD risk. These findings underscore the potential importance of proactive screening and treatment of REM OSA even if overall AHI appears low.

4.
Brain Commun ; 5(6): fcad302, 2023.
Article in English | MEDLINE | ID: mdl-37965047

ABSTRACT

Recent evidence shows that identifying and treating epileptiform abnormalities in patients with Alzheimer's disease could represent a potential avenue to improve clinical outcome. Specifically, animal and human studies have revealed that in the early phase of Alzheimer's disease, there is an increased risk of seizures. It has also been demonstrated that the administration of anti-seizure medications can slow the functional progression of the disease only in patients with EEG signs of cortical hyperexcitability. In addition, although it is not known at what disease stage hyperexcitability emerges, there remains no consensus regarding the imaging and diagnostic methods best able to detect interictal events to further distinguish different phenotypes of Alzheimer's disease. In this exploratory work, we studied 13 subjects with amnestic mild cognitive impairment and 20 healthy controls using overnight high-density EEG with 256 channels. All participants also underwent MRI and neuropsychological assessment. Electronic source reconstruction was also used to better select and localize spikes. We found spikes in six of 13 (46%) amnestic mild cognitive impairment compared with two of 20 (10%) healthy control participants (P = 0.035), representing a spike prevalence similar to that detected in previous studies of patients with early-stage Alzheimer's disease. The interictal events were low-amplitude temporal spikes more prevalent during non-rapid eye movement sleep. No statistically significant differences were found in cognitive performance between amnestic mild cognitive impairment patients with and without spikes, but a trend in immediate and delayed memory was observed. Moreover, no imaging findings of cortical and subcortical atrophy were found between amnestic mild cognitive impairment participants with and without epileptiform spikes. In summary, our exploratory study shows that patients with amnestic mild cognitive impairment reveal EEG signs of hyperexcitability early in the disease course, while no other significant differences in neuropsychological or imaging features were observed among the subgroups. If confirmed with longitudinal data, these exploratory findings could represent one of the first signatures of a preclinical epileptiform phenotype of amnestic mild cognitive impairment and its progression.

5.
Neuroimage ; 274: 120133, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37094626

ABSTRACT

STUDY OBJECTIVES: Sleep slow wave activity, as measured using EEG delta power (<4 Hz), undergoes significant changes throughout development, mirroring changes in brain function and anatomy. Yet, age-dependent variations in the characteristics of individual slow waves have not been thoroughly investigated. Here we aimed at characterizing individual slow wave properties such as origin, synchronization, and cortical propagation at the transition between childhood and adulthood. METHODS: We analyzed overnight high-density (256 electrodes) EEG recordings of healthy typically developing children (N = 21, 10.3 ± 1.5 years old) and young healthy adults (N = 18, 31.1 ± 4.4 years old). All recordings were preprocessed to reduce artifacts, and NREM slow waves were detected and characterized using validated algorithms. The threshold for statistical significance was set at p = 0.05. RESULTS: The slow waves of children were larger and steeper, but less widespread than those of adults. Moreover, they tended to mainly originate from and spread over more posterior brain areas. Relative to those of adults, the slow waves of children also displayed a tendency to more strongly involve and originate from the right than the left hemisphere. The separate analysis of slow waves characterized by high and low synchronization efficiency showed that these waves undergo partially distinct maturation patterns, consistent with their possible dependence on different generation and synchronization mechanisms. CONCLUSIONS: Changes in slow wave origin, synchronization, and propagation at the transition between childhood and adulthood are consistent with known modifications in cortico-cortical and subcortico-cortical brain connectivity. In this light, changes in slow-wave properties may provide a valuable yardstick to assess, track, and interpret physiological and pathological development.


Subject(s)
Brain Waves , Neocortex , Adult , Humans , Child , Electroencephalography , Sleep/physiology , Brain Waves/physiology
6.
Sleep ; 45(9)2022 09 08.
Article in English | MEDLINE | ID: mdl-35670275

ABSTRACT

STUDY OBJECTIVES: Fast frequency sleep spindles are reduced in aging and Alzheimer's disease (AD), but the mechanisms and functional relevance of these deficits remain unclear. The study objective was to identify AD biomarkers associated with fast sleep spindle deficits in cognitively unimpaired older adults at risk for AD. METHODS: Fifty-eight cognitively unimpaired, ß-amyloid-negative, older adults (mean ±â€…SD; 61.4 ±â€…6.3 years, 38 female) enriched with parental history of AD (77.6%) and apolipoprotein E (APOE) ε4 positivity (25.9%) completed the study. Cerebrospinal fluid (CSF) biomarkers of central nervous system inflammation, ß-amyloid and tau proteins, and neurodegeneration were combined with polysomnography (PSG) using high-density electroencephalography and assessment of overnight memory retention. Parallelized serial mediation models were used to assess indirect effects of age on fast frequency (13 to <16Hz) sleep spindle measures through these AD biomarkers. RESULTS: Glial activation was associated with prefrontal fast frequency sleep spindle expression deficits. While adjusting for sex, APOE ε4 genotype, apnea-hypopnea index, and time between CSF sampling and sleep study, serial mediation models detected indirect effects of age on fast sleep spindle expression through microglial activation markers and then tau phosphorylation and synaptic degeneration markers. Sleep spindle expression at these electrodes was also associated with overnight memory retention in multiple regression models adjusting for covariates. CONCLUSIONS: These findings point toward microglia dysfunction as associated with tau phosphorylation, synaptic loss, sleep spindle deficits, and memory impairment even prior to ß-amyloid positivity, thus offering a promising candidate therapeutic target to arrest cognitive decline associated with aging and AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , tau Proteins , Aged , Alzheimer Disease/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Apolipoprotein E4/genetics , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/cerebrospinal fluid , Female , Humans , Inflammation , Male , Middle Aged , Peptide Fragments/cerebrospinal fluid , Sleep/physiology , tau Proteins/cerebrospinal fluid
7.
Conscious Cogn ; 97: 103247, 2022 01.
Article in English | MEDLINE | ID: mdl-34864360

ABSTRACT

Evidence suggests continuity between cognition in waking and sleeping states. However, one type of cognition that may differ is episodic thoughts of the past and future. The current study investigated this across waking, NREM sleep and REM sleep. We analyzed thought reports obtained from a large sample of individuals (N = 138) who underwent experience-sampling during wakefulness as well as serial awakenings in sleep. Our data suggest that while episodic thoughts are common during waking spontaneous thought, episodic thoughts of both the past and the future rarely occur in either N2 or REM sleep. Moreover, replicating previous findings, episodic thoughts during wakefulness exhibit a strong prospective bias and frequently involve autobiographical planning. Together, these results suggest that the occurrence of spontaneous episodic thoughts differs substantially across waking and dreaming sleep states. We suggest that this points to a difference in the way that human consciousness is typically experienced across the sleep-wake cycle.


Subject(s)
Sleep, REM , Wakefulness , Cognition , Humans , Prospective Studies , Sleep
8.
Life Sci ; 280: 119702, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34111462

ABSTRACT

AIMS: Nearly a third of U.S. veterans who deployed in support of the 1990-1991 Persian Gulf War are affected by Gulf War illness (GWI). Here we aimed to characterize whether subjective sleep complaints in GWI veterans are associated with objective sleep EEG disturbances relative to healthy veterans and controls; and whether Gulf War veterans show alterations in neural activity during sleep that differentiate them from healthy subjects. MAIN METHODS: We used high-density EEG (HDEEG) to assess regional patterns of rapid eye movement (REM) sleep and non-REM (NREM) sleep between three groups: Gulf War male veterans with fatigue and GWI, Gulf War male veterans without fatigue or GWI, and control males. The groups were matched relative to age, sex and obstructive sleep apnea. Topographic comparisons of nocturnal NREM and REM sleep were made between groups for all frequency bands. KEY FINDINGS: Topographic analysis revealed a broadband reduction in EEG power in a circumscribed region overlying the frontal lobe in both groups of Gulf War veterans, regardless of GWI and fatigue. This frontal reduction in neural activity was present, to some extent, across all frequency bands in NREM and REM sleep. SIGNIFICANCE: Given that our findings were observed in all Gulf War veterans, it appears unlikely that frontal sleep HDEEG power reductions prove wholly responsible for fatigue symptoms. These results provide avenues for research which may someday contribute to improved clinical care of formerly deployed veterans of the Persian Gulf War.


Subject(s)
Frontal Lobe/physiopathology , Persian Gulf Syndrome/physiopathology , Sleep Apnea, Obstructive/physiopathology , Sleep , Adult , Case-Control Studies , Electroencephalography , Fatigue/etiology , Fatigue/physiopathology , Gulf War , Humans , Male , Middle Aged , Persian Gulf Syndrome/complications , Polysomnography , Prospective Studies , Sleep Apnea, Obstructive/etiology
9.
Sci Rep ; 11(1): 4758, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33637812

ABSTRACT

Rapid eye movement (REM) sleep behavior disorder (RBD) is characterized by disrupting motor enactments during REM sleep, but also cognitive impairments across several domains. In addition to REM sleep abnormalities, we hypothesized that RBD patients may also display EEG abnormalities during NREM sleep. We collected all-night recordings with 256-channel high-density EEG in nine RBD patients, predominantly early-onset medicated individuals, nine sex- and age- matched healthy controls, and nine additional controls with matched medications and comorbidities. Power spectra in delta to gamma frequency bands were compared during both REM and NREM sleep, between phasic and tonic REM sleep, and between the first versus last cycle of NREM sleep. Controls, but not RBD patients, displayed a decrease in beta power during phasic compared to tonic REM sleep. Compared to controls, RBD patients displayed a reduced decline in SWA from early to late NREM sleep. Overnight changes in the distribution of the amplitude of slow waves were also reduced in RBD patients. Without suppression of beta rhythms during phasic REM sleep, RBD patients might demonstrate heightened cortical arousal, favoring the emergence of behavioral episodes. A blunted difference between REM sleep sub-stages may constitute a sensitive biomarker for RBD. Moreover, reduced overnight decline in SWA suggests a reduced capacity for synaptic plasticity in RBD patients, which may favor progression towards neurodegenerative diseases.


Subject(s)
Brain/physiopathology , Electroencephalography , REM Sleep Behavior Disorder/physiopathology , Sleep Stages/physiology , Adult , Case-Control Studies , Female , Homeostasis , Humans , Male , Middle Aged , Polysomnography , REM Sleep Behavior Disorder/complications
10.
J Sleep Res ; 30(4): e13261, 2021 08.
Article in English | MEDLINE | ID: mdl-33442931

ABSTRACT

Emotion processing abnormalities and sleep pathology are central to the phenomenology of paediatric posttraumatic stress disorder, and sleep disturbance has been linked to the development, maintenance and severity of the disorder. Given emerging evidence indicating a role for sleep in emotional brain function, it has been proposed that dysfunctional processing of emotional experiences during sleep may play a significant role in affective disorders, including posttraumatic stress disorder. Here we sought to examine the relationship between sleep and emotion processing in typically developing youth, and youth with a diagnosis of posttraumatic stress disorder . We use high-density electroencephalogram to compare baseline sleep with sleep following performance on a task designed to assess both memory for and reactivity to negative and neutral imagery in 10 youths with posttraumatic stress disorder, and 10 age- and sex-matched non-traumatized typically developing youths. Subjective ratings of arousal to negative imagery (ΔArousal = post-sleep minus pre-sleep arousal ratings) remain unchanged in youth with posttraumatic stress disorder following sleep (mean increase 0.15, CI -0.28 to +0.58), but decreased in TD youth (mean decrease -1.0, 95% CI -1.44 to -0.58). ΔArousal, or affective habituation, was negatively correlated with global change in slow-wave activity power (ρ = -0.58, p = .008). When considered topographically, the correlation between Δslow-wave activity power and affective habituation was most significant in a frontal cluster of 27 electrodes (Spearman, ρ = -0.51, p = .021). Our results highlight the importance of slow-wave sleep for adaptive emotional processing in youth, and have implications for symptom persistence in paediatric posttraumatic stress disorder. Impairments in slow-wave activity may represent a modifiable risk factor in paediatric posttraumatic stress disorder.


Subject(s)
Emotions , Sleep , Stress Disorders, Post-Traumatic/physiopathology , Stress Disorders, Post-Traumatic/psychology , Adolescent , Child , Female , Humans , Male , Pilot Projects
11.
J Neurosci ; 40(29): 5589-5603, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32541070

ABSTRACT

The slow waves of non-rapid eye movement (NREM) sleep reflect experience-dependent plasticity and play a direct role in the restorative functions of sleep. Importantly, slow waves behave as traveling waves, and their propagation is assumed to occur through cortico-cortical white matter connections. In this light, the corpus callosum (CC) may represent the main responsible for cross-hemispheric slow-wave propagation. To verify this hypothesis, we performed overnight high-density (hd)-EEG recordings in five patients who underwent total callosotomy due to drug-resistant epilepsy (CPs; two females), in three noncallosotomized neurologic patients (NPs; two females), and in a sample of 24 healthy adult subjects (HSs; 13 females). In all CPs slow waves displayed a significantly reduced probability of cross-hemispheric propagation and a stronger inter-hemispheric asymmetry. In both CPs and HSs, the incidence of large slow waves within individual NREM epochs tended to differ across hemispheres, with a relative overall predominance of the right over the left hemisphere. The absolute magnitude of this asymmetry was greater in CPs relative to HSs. However, the CC resection had no significant effects on the distribution of slow-wave origin probability across hemispheres. The present results indicate that CC integrity is essential for the cross-hemispheric traveling of slow waves in human sleep, which is in line with the assumption of a direct relationship between white matter integrity and slow-wave propagation. Our findings also revealed a residual cross-hemispheric slow-wave propagation that may rely on alternative pathways, including cortico-subcortico-cortical loops. Finally, these data indicate that the lack of the CC does not lead to differences in slow-wave generation across brain hemispheres.SIGNIFICANCE STATEMENT The slow waves of NREM sleep behave as traveling waves, and their propagation has been suggested to reflect the integrity of white matter cortico-cortical connections. To directly assess this hypothesis, here we investigated the role of the corpus callosum in the cortical spreading of NREM slow waves through the study of a rare population of totally callosotomized patients. Our results demonstrate a causal role of the corpus callosum in the cross-hemispheric traveling of sleep slow waves. Additionally, we found that callosotomy does not affect the relative tendency of each hemisphere at generating slow waves. Incidentally, we also found that slow waves tend to originate more often in the right than in the left hemisphere in both callosotomized and healthy adult individuals.


Subject(s)
Brain Waves , Corpus Callosum/physiology , Sleep, Slow-Wave , Adult , Aged , Corpus Callosum/surgery , Electroencephalography , Female , Humans , Male , Middle Aged , Split-Brain Procedure
12.
Curr Opin Physiol ; 15: 172-182, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32455180

ABSTRACT

Objective sleep quality can be measured by electroencephalography (EEG), a non-invasive technique to quantify electrical activity generated by the brain. With EEG, sleep depth is measured by appearance and an increase in slow wave activity (scalp-SWA). EEG slow waves (scalp-SW) are the manifestation of underlying synchronous membrane potential transitions between silent (DOWN) and active (UP) states. This bistable periodic rhythm is defined as slow oscillation (SO). During its "silent state" cortical neurons are hyperpolarized and appear inactive, while during its "active state" cortical neurons are depolarized, fire spikes and exhibit continuous synaptic activity, excitatory and inhibitory. In adults, data from high-density EEG revealed that scalp-SW propagate across the cortical mantle in complex patterns. However, scalp-SW propagation undergoes modifications across development. We present novel data from children, indicating that scalp-SW originate centro-parietally, and emerge more frontally by adolescence. Based on the concept that SO and SW could actively modify neuronal connectivity, we discuss whether they fulfill a key purpose in brain development by actively conveying modifications of the maturing brain.

13.
Schizophr Res ; 221: 37-43, 2020 07.
Article in English | MEDLINE | ID: mdl-32220503

ABSTRACT

Abnormal sleep oscillations have recently been proposed as endophenotypes of schizophrenia. However, optimization of methodological approaches is still necessary to standardize analyses of their microstructural characteristics. Additionally, some relevant features of these oscillations remain unexplored in pathological conditions. Among others, slow wave traveling is a promising proxy for diurnal processes of brain connectivity and excitability. The study of slow oscillations propagation appears particularly relevant when schizophrenia is conceptualized as a dys-connectivity syndrome. Given the rising knowledge on the neurobiological mechanisms underlying slow wave traveling, this measure might offer substantial advantages over other approaches in investigating brain connectivity. Herein we: 1) confirm the stability of our previous findings on slow waves and sleep spindles in FDRs using different automated algorithms, and 2) report the dynamics of slow wave traveling in FDRs of Schizophrenia patients. A 256-channel, high-density EEG system was employed to record a whole night of sleep of 16 FDRs and 16 age- and gender-matched control subjects. A recently developed, open source toolbox was used for slow wave visualization and detection. Slow waves were confirmed to be significantly smaller in FDRs compared to the control group. Additionally, several traveling parameters were analyzed. Traveled distances were found to be significantly reduced in FDRs, whereas origins showed a different topographical pattern of distribution from control subjects. In contrast, local speed did not differ between groups. Overall, these results suggest that slow wave traveling might be a viable method to study pathological conditions interfering with brain connectivity.


Subject(s)
Schizophrenia , Brain/diagnostic imaging , Electroencephalography , Feasibility Studies , Humans , Sleep
14.
Psychol Conscious (Wash D C) ; 6(1): 40-54, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31058200

ABSTRACT

Strong conceptual and theoretical connections have been made between meditation practice, mindfulness and lucid dreaming. However, only a handful of empirical studies have evaluated the relationship between lucid dreaming and meditation, and conclusions remain tempered by methodological limitations. Here we evaluate the relationship between meditation, mindfulness and lucid dream frequency using several complementary methods. First, using a cross-sectional design, we evaluate differences in lucid dream frequency between long-term meditators and meditation naïve individuals. Second, we evaluate the relationship between lucid dream frequency and specific facets of trait mindfulness in both meditators and non-meditators. Third, using a blinded randomized-controlled design, we evaluate the impact of an 8-week mindfulness course on lucid dreaming frequency. Our results show that lucid dreaming is more frequent in long-term meditators compared to meditation naïve individuals. Additionally, lucid dream frequency in meditation-naïve individuals was associated with a capacity to verbalize experience, while lucid dream frequency in long-term meditators was associated with observational and decentering facets of trait mindfulness. However, an 8-week mindfulness course did not increase the frequency of lucid dreams. Together these results support a continuity between increased awareness of waking and sleeping states, provide a novel form of evidence linking meditation training to meta-awareness, and support an association between meditation practice and lucid dreaming, but leave open the specific nature of this connection.

15.
Sleep ; 42(6)2019 06 11.
Article in English | MEDLINE | ID: mdl-30854559

ABSTRACT

STUDY OBJECTIVES: To clarify whether hypersomnolence disorder is associated with a specific sleep phenotype and altered neurophysiological function in persons with and without hypersomnolence disorder and major depressive disorder (MDD). METHODS: Eighty-three unmedicated persons with and without hypersomnolence disorder and/or MDD underwent ad libitum high-density EEG polysomnography. Clinical and sleep architecture variables were compared between groups. Topographic patterns of slow-wave activity (SWA) relative to healthy controls were compared, with correlations between topographic SWA and daytime sleepiness assessed. Reductions in SWA in hypersomnolence disorder were mapped to specific cortical areas using source localization. RESULTS: Regardless of the presence or absence of comorbid MDD, persons with hypersomnolence disorder had increased sleep duration relative to both controls and persons with MDD without hypersomnolence. Participants with hypersomnolence disorder also demonstrated reduced bilateral centroparietal low-frequency activity during nonrapid eye movement sleep relative to controls, a pattern not observed in persons with MDD but without hypersomnolence. SWA in these regions was negatively correlated with subjective measures of daytime sleepiness. Source localization demonstrated reductions in SWA in the supramarginal gyrus, somatosensory, and transverse temporal cortex in participants with hypersomnolence disorder. CONCLUSIONS: Hypersomnolence disorder is characterized by increased sleep duration with normal sleep continuity, regardless of the presence or absence of comorbid depression. Reduced local SWA may be a specific neurophysiological finding in hypersomnolence disorder. Further research is warranted to elucidate the mechanisms through which these cortical changes are related to clinical complaints of daytime sleepiness.


Subject(s)
Brain Waves/physiology , Disorders of Excessive Somnolence/physiopathology , Nervous System Physiological Phenomena , Sleep, Slow-Wave/physiology , Sleepiness , Adult , Comorbidity , Depression/psychology , Depressive Disorder, Major/complications , Female , Goals , Humans , Male , Middle Aged , Phenotype , Polysomnography
16.
Sci Rep ; 8(1): 16664, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30413741

ABSTRACT

Sleep and anesthesia entail alterations in conscious experience. Conscious experience may be absent (unconsciousness) or take the form of dreaming, a state in which sensory stimuli are not incorporated into conscious experience (disconnected consciousness). Recent work has identified features of cortical activity that distinguish conscious from unconscious states; however, less is known about how cortical activity differs between disconnected states and normal wakefulness. We employed transcranial magnetic stimulation-electroencephalography (TMS-EEG) over parietal regions across states of anesthesia and sleep to assess whether evoked oscillatory activity differed in disconnected states. We hypothesized that alpha activity, which may regulate perception of sensory stimuli, is altered in the disconnected states of rapid eye movement (REM) sleep and ketamine anesthesia. Compared to wakefulness, evoked alpha power (8-12 Hz) was decreased during disconnected consciousness. In contrast, in unconscious states of propofol anesthesia and non-REM (NREM) sleep, evoked low-gamma power (30-40 Hz) was decreased compared to wakefulness or states of disconnected consciousness. These findings were confirmed in subjects in which dream reports were obtained following serial awakenings from NREM sleep. By examining signatures of evoked cortical activity across conscious states, we identified novel evidence that suppression of evoked alpha activity may represent a promising marker of sensory disconnection.


Subject(s)
Alpha Rhythm/physiology , Anesthesia , Cerebral Cortex/physiology , Consciousness/physiology , Sleep/physiology , Unconsciousness/physiopathology , Wakefulness/physiology , Evoked Potentials, Motor , Humans , Transcranial Magnetic Stimulation
17.
eNeuro ; 5(4)2018.
Article in English | MEDLINE | ID: mdl-30225358

ABSTRACT

It is often assumed that during rapid eye movement (REM) sleep the cerebral cortex homogenously shows electroencephalogram (EEG) activity highly similar to wakefulness. However, to date no studies have compared neural oscillatory activity in human REM sleep to resting wakefulness with high spatial sampling. In the current study, we evaluated high-resolution topographical changes in neural oscillatory power between both early and late naturalistic REM sleep and resting wakefulness in adult humans. All-night recordings with 256-channel high-density EEG (hd-EEG) were collected in healthy volunteers (N = 12). Topographic analysis revealed that, compared to wake, both the first and last cycle of REM sleep were associated with increased low-frequency oscillations in local central and occipital regions. In contrast, high-frequency activity in both α and ß bands (8-20 Hz) was globally decreased during both early and late REM sleep cycles compared to wakefulness. No significant differences in topographic power in any frequency band were observed between REM sleep cycles occurring early and late in the night. We replicated these findings in an independent dataset (N = 33). Together, our findings show that human REM sleep shows consistent topographical changes in oscillatory power across both early and late sleep cycles compared to resting wakefulness.


Subject(s)
Brain Waves/physiology , Cerebral Cortex/physiology , Electroencephalography/methods , Rest/physiology , Sleep, REM/physiology , Wakefulness/physiology , Adult , Female , Humans , Male , Middle Aged
18.
J Neural Eng ; 15(6): 066018, 2018 12.
Article in English | MEDLINE | ID: mdl-30215604

ABSTRACT

OBJECTIVE: Recent evidence reports cognitive, metabolic, and sleep restoration benefits resulting from the enhancement of sleep slow-waves using auditory stimulation. Our objective is to make this concept practical for consumer use by developing and validating an electroencephalogram (EEG) closed-loop system to deliver auditory stimulation during sleep to enhance slow-waves. APPROACH: The system automatically detects slow-wave sleep with 74% sensitivity and 97% specificity and optimally delivers stimulation in the form of 50 ms-long tones separated by a constant one-second inter-tone interval at a volume that is dynamically modulated such that louder tones are delivered when sleep is deeper. The system was tested in a study involving 28 participants (18F, 10M; 36.9 ± 7.3 years old; median age: 40 years old) who used the system for ten nights (five nights in a sham condition and five in a stimulation condition). Four nights in each condition were recorded at-home and the fifth one in-lab. MAIN RESULTS: The analysis in two age groups defined by the median age of participants in the study shows significant slow wave activity enhancement (+16.1%, p < 0.01) for the younger group and absence of effect on the older group. However, the older group received only a fraction (57%) of the stimulation compared to the younger group. Changes in sleep architecture and EEG properties due to aging have influenced the amount of stimulation. The analysis of the stimulation timing suggests an entrainment-like phenomenon where slow-waves align to the stimulation periodicity. In addition, enhancement of spindle power in the stimulation condition was found. SIGNIFICANCE: We show evidence of the viability of delivering auditory stimulation during sleep, at home, to enhance slow wave activity. The system ensures the stimulation delivery to be at the right time during sleep without causing disturbance.


Subject(s)
Acoustic Stimulation/methods , Electroencephalography/methods , Sleep, Slow-Wave/physiology , Adult , Aging/physiology , Algorithms , Female , Healthy Volunteers , Humans , Male , Middle Aged , Sleep Stages/physiology
19.
Sleep ; 41(11)2018 11 01.
Article in English | MEDLINE | ID: mdl-30169809

ABSTRACT

Study Objectives: Sleep slow waves behave like traveling waves and are thus a marker for brain connectivity. Across a night of sleep in adults, wave propagation is scaled down, becoming more local. Yet, it is unknown whether slow wave propagation undergoes similar across-night dynamics in childhood-a period of extensive cortical rewiring. Methods: High-density electroencephalography (EEG; 128 channels) was recorded during sleep in three groups of healthy children: 2.0-4.9 years (n = 11), 5.0-8.9 years (n = 9) and 9.0-16.9 years (n = 9). Slow wave propagation speed, distance, and cortical involvement were quantified. To characterize across-night dynamics, the 20% most pronounced (highest amplitude) slow waves were subdivided into five time-based quintiles. Results: We found indications that slow wave propagation distance decreased across a night of sleep. We observed an interesting interaction of across-night slow wave propagation dynamics with age (p < 0.05). When comparing the first and last quintiles, there was a trend level difference between age groups: 2- to 4.9-year-old children showed an 11.9% across-night decrease in slow wave propagation distance, which was not observed in the older two age groups. Regardless of age, cortical involvement decreased by 10.4%-23.7% across a night of sleep. No across-night changes were observed in slow wave speed. Conclusions: Findings provide evidence that signatures of brain connectivity undergo across-night dynamics specific to maturational periods. These results suggest that across-night dynamics in slow wave propagation distance reflect heightened plasticity in underlying cerebral networks specific to developmental periods.


Subject(s)
Brain Waves/physiology , Brain/physiology , Electroencephalography/methods , Sleep, Slow-Wave/physiology , Adolescent , Adult , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Male , Sleep/physiology
20.
Eur J Neurosci ; 48(6): 2310-2321, 2018 09.
Article in English | MEDLINE | ID: mdl-30144201

ABSTRACT

Our recent finding of a meditation-related increase in low-frequency NREM sleep EEG oscillatory activities peaking in the theta-alpha range (4-12 Hz) was not predicted. From a consolidated body of research on sleep homeostasis, we would expect a change peaking in slow wave activity (1-4 Hz) following an intense meditation session. Here we compared these changes in sleep with the post-meditation changes in waking rest scalp power to further characterize their functional significance. High-density EEG recordings were acquired from 27 long-term meditators (LTM) on three separate days at baseline and following two 8-hr sessions of either mindfulness or compassion-and-loving-kindness meditation. Thirty-one meditation-naïve participants (MNP) were recorded at the same time points. As a common effect of meditation practice, we found increases in low and fast waking EEG oscillations for LTM only, peaking at eight and 15 Hz respectively, over prefrontal, and left centro-parietal electrodes. Paralleling our previous findings in sleep, there was no significant difference between meditation styles in LTM as well as no difference between matched sessions in MNP. Meditation-related changes in wakefulness and NREM sleep were correlated across space and frequency. A significant correlation was found in the EEG low frequencies (<12 Hz). Since the peak of coupling was observed in the theta-alpha oscillatory range, sleep homeostatic response to meditation practice is not sufficient to explain our findings. Another likely phenomenon into play is a reverberation of meditation-related processes during subsequent sleep. Future studies should ascertain the interplay between these processes in promoting the beneficial effects of meditation practice.


Subject(s)
Brain/physiology , Homeostasis/physiology , Meditation/psychology , Sleep/physiology , Adult , Aged , Electroencephalography/psychology , Female , Humans , Male , Middle Aged , Rest/physiology , Wakefulness/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...