Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Int J Parasitol ; 54(7): 321-332, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460722

ABSTRACT

Key parasite transmission parameters are difficult to obtain from elusive wild animals. For Echinococcus multilocularis, the causative agent of alveolar echinococcosis (AE), the red fox is responsible for most of the environmental contamination in Europe. The identification of individual spreaders of E. multilocularis environmental contamination is crucial to improving our understanding of the ecology of parasite transmission in areas of high endemicity and optimising the effectiveness of prevention and control measures in the field. Genetic faecal sampling appears to be a feasible method to gain information about the faecal deposition of individual animals. We conducted a 4 year faecal sampling study in a village that is highly endemic for E. multilocularis, to assess the feasibility of individual identification and sexing of foxes to describe individual infection patterns. Individual fox identification from faecal samples was performed by obtaining reliable genotypes from 14 microsatellites and one sex locus, coupled with the detection of E. multilocularis DNA, first using captive foxes and then by environmental sampling. From a collection of 386 fox stools collected between 2017 and 2020, tested for the presence of E. multilocularis DNA, 180 were selected and 124 samples were successfully genotyped (68.9%). In total, 45 unique individual foxes were identified and 26 associated with at least one sample which tested positive for E. multilocularis (Em(+)). Estimation of the population size showed the fox population to be between 29 and 34 individuals for a given year and 67 individuals over 4 years. One-third of infected individuals (9/26 Em(+) foxes) deposited 2/3 of the faeces which tested positive for E. multilocularis (36/60 Em(+) stools). Genetic investigation showed a significantly higher average number of multiple stools for females than males, suggesting that the two sexes potentially defecated unequally in the studied area. Three partially overlapping clusters of fox faeces were found, with one cluster concentrating 2/3 of the total E. multilocularis-positive faeces. Based on these findings, we estimated that 12.5 million E. multilocularis eggs were produced during the study period, emphasizing the high contamination level of the environment and the risk of exposure faced by the parasite hosts.


Subject(s)
Echinococcosis , Echinococcus multilocularis , Feces , Foxes , Genotype , Animals , Foxes/parasitology , Echinococcus multilocularis/isolation & purification , Echinococcus multilocularis/genetics , Feces/parasitology , Echinococcosis/veterinary , Echinococcosis/parasitology , Echinococcosis/transmission , Female , Male , Microsatellite Repeats
2.
Sci Rep ; 12(1): 15904, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36151261

ABSTRACT

Knowledge gaps regarding the potential role of pesticides in the loss of agricultural biodiversity worldwide and mixture-related issues hamper proper risk assessment of unintentional impacts of pesticides, rendering essential the monitoring of wildlife exposure to these compounds. Free-ranging mammal exposure to legacy (Banned and Restricted: BRPs) and currently used (CUPs) pesticides was investigated, testing the hypotheses of: (1) a background bioaccumulation for BRPs whereas a "hot-spot" pattern for CUPs, (2) different contamination profiles between carnivores and granivores/omnivores, and (3) the role of non-treated areas as refuges towards exposure to CUPs. Apodemus mice (omnivore) and Crocidura shrews (insectivore) were sampled over two French agricultural landscapes (n = 93). The concentrations of 140 parent chemicals and metabolites were screened in hair samples. A total of 112 compounds were detected, showing small mammal exposure to fungicides, herbicides and insecticides with 32 to 65 residues detected per individual (13-26 BRPs and 18-41 CUPs). Detection frequencies exceeded 75% of individuals for 13 BRPs and 25 CUPs. Concentrations above 10 ng/g were quantified for 7 BRPs and 29 CUPs (in 46% and 72% of individuals, respectively), and above 100 ng/g for 10 CUPs (in 22% of individuals). Contamination (number of compounds or concentrations) was overall higher in shrews than rodents and higher in animals captured in hedgerows and cereal crops than in grasslands, but did not differ significantly between conventional and organic farming. A general, ubiquitous contamination by legacy and current pesticides was shown, raising issues about exposure pathways and impacts on ecosystems. We propose a concept referred to as "biowidening", depicting an increase of compound diversity at higher trophic levels. This work suggests that wildlife exposure to pesticide mixtures is a rule rather than an exception, highlighting the need for consideration of the exposome concept and questioning appropriateness of current risk assessment and mitigation processes.


Subject(s)
Fungicides, Industrial , Herbicides , Insecticides , Pesticides , Animals , Ecosystem , Environmental Monitoring , Fungicides, Industrial/analysis , Insecticides/analysis , Mice , Pesticides/chemistry , Shrews
3.
Integr Environ Assess Manag ; 18(2): 539-554, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34138503

ABSTRACT

Environmental risk assessment of contaminated soils requires bioindicators that allow the assessment of bioavailability and toxicity of chemicals. Although many bioassays can determine the ecotoxicity of soil samples in the laboratory, few are available and standardized for on-site application. Bioassays based on specific threshold values that assess the in situ and ex situ bioavailability and risk of metal(loid)s and polycyclic aromatic hydrocarbons (PAHs) in soils to the land snail Cantareus aspersus have never been simultaneously applied to the same soils. The aims of this study were to compare the results provided by in situ and ex situ bioassays and to determine their respective importance for environmental risk assessment. The feasibility and reproducibility of the in situ bioassay were assessed using an international ring test. This study used five plots located at a former industrial site and six laboratories participated in the ring test. The results revealed the impact of environmental parameters on the bioavailability of metal(loid)s and PAHs to snails exposed in the field to structured soils and vegetation compared to those exposed under laboratory conditions to soil collected from the same field site (excavated soils). The risk coefficients were generally higher ex situ than in situ, with some exceptions (mainly due to Cd and Mo), which might be explained by the in situ contribution of plants and humus layer as sources of exposure of snails to contaminants and by climatic parameters. The ring test showed good agreement among laboratories, which determined the same levels of risk in most of the plots. Comparison of the bioavailability to land snails and the subsequent risk estimated in situ or ex situ highlighted the complementarity between both approaches in the environmental risk assessment of contaminated soils, namely, to guide decisions on the fate and future use of the sites (e.g., excavation, embankments, and land restoration). Integr Environ Assess Manag 2022;18:539-554. © 2021 SETAC.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Biological Assay , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Reproducibility of Results , Risk Assessment , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
4.
Environ Sci Pollut Res Int ; 28(14): 17343-17354, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33398759

ABSTRACT

An accurate assessment of the environmental risk of soils contaminated by metal(loid)s (MEs) requires quantifying exposure and knowing the toxicity of contaminants transferred to biota. For this purpose, two indices have been developed with the bioindicator Cantareus aspersus to assess exposure (SET: sum of the excess of transfer) and risk (ERITME: evaluation of the risk of the transferred metal elements) of multi-contaminated soils. If the SET and ERITME indices allow characterization of exposure and risk based on unspecific toxicity points, then the link between these indices and real effects on some toxicological endpoints, such as growth or sexual maturation, remains to be demonstrated. For this purpose, sub-adult snails were exposed for 28 days to 38 ME-contaminated soils. Relationships between the SET and/or ERITME indices and health alterations in C. aspersus were determined using Spearman correlations, linear regressions, univariate regression trees, and kinetic models. Relationships were determined between the values of the SET and ERITME indices, bioaccumulation as an indicator of ME bioavailability, and the alteration in physiological endpoints, such as the shell development used as a non-invasive indicator of sexual maturation. The results enabled the determination of three levels of risk according to the differences in reaching sexual maturity: no risk, uncertain, and proven risk depended on whether the value of ERITME was below, in, or beyond the interval [2574-22720], respectively. This study provides the first benchmarks with the SET and ERITME indices to interpret the risk of contaminated soils to snails and to relate the environmental and toxicological bioavailability of ME mixtures.


Subject(s)
Soil Pollutants , Animals , Biological Availability , Risk Assessment , Sexual Maturation , Snails , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
5.
Int J Parasitol ; 50(14): 1195-1204, 2020 12.
Article in English | MEDLINE | ID: mdl-32896570

ABSTRACT

The eggs of Echinococcus multilocularis, the infectious stage, are spread into the environment through wild and domestic carnivore faeces. The spatial location of the faeces containing infective E. multilocularis eggs is a key parameter for studying areas of exposure and understanding the transmission processes to the intermediate hosts and humans. Echinococcus multilocularis faecal prevalence is often assessed by detecting E. multilocularis DNA, not necessarily eggs. This work aimed to determine the percentage of faeces containing E. multilocularis eggs in a rural town and its surroundings and whether this level of precision is relevant in assessing exposure to E. multilocularis. For this purpose, we developed a combined molecular and microscopic approach to investigate the E. multilocularis exposure of potential hosts in the environment from field-collected carnivore faeces. Carnivore defecation patterns were then spatialized to study the spatial distribution of E. multilocularis. Faeces were screened for E. multilocularis DNA using a specific real-time quantitative PCR (qPCR). Echinococcus multilocularis eggs were morphologically identified from E. multilocularis-specific qPCR-positive faeces after sucrose flotation and individually confirmed through specific PCR and sequencing. The spatial distribution of E. multilocularis was studied using Kulldorff statistics. Echinococcus multilocularis eggs were identified mostly in fox faeces positive for E. multilocularis DNA by qPCR (n = 27/70) and only from 1 of 15 copro-samples from dogs and 1 of 5 from cats. The faecal prevalence of E. multilocularis DNA and eggs was overdispersed, with the same geographical patterns. These data suggest that E. multilocularis DNA and/or egg detection in carnivore faeces, mainly that of foxes, is appropriate in ecological studies of E. multilocularis transmission.


Subject(s)
Echinococcosis , Echinococcus multilocularis , Animals , Cats/parasitology , Cities , Dogs/parasitology , Echinococcosis/transmission , Feces/parasitology , Foxes/parasitology , Parasite Egg Count , Real-Time Polymerase Chain Reaction
6.
Sci Total Environ ; 484: 43-52, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24686144

ABSTRACT

The proliferation of epilithic algae that form biofilms in subterranean environments, such as show caves, is a major problem for conservators. In an effort to reduce the use of chemical cleansers when addressing this problem, we proposed investigating the effects of UV-C on combating algal biofilm expansion in a cave located in northeastern France (Moidons Cave). First, the biofilms and cavity were studied in terms of their algal growth-influencing factors to understand the dynamics of colonization in these very harsh environments. Next, colorimetric measurements were used both to diagnose the initial colonization state and monitor the UV-C-treated biofilms for several months after irradiation. The results indicated that passive dispersal vectors of the viable spores and cells were the primary factors involved in the cave's algae repartition. The illumination time during visits appeared to be responsible for greater colonization in some parts of the cave. We also showed that colorimetric measurements could be used for the detection of both thin and thick biofilms, regardless of the type of colonized surface. Finally, our results showed that UV-C treatment led to bleaching of the treated biofilm due to chlorophyll degradation even one year after UV-C treatment. However, a re-colonization phenomenon was colorimetrically and visually detected 16months later, suggesting that the colonization dynamics had not been fully halted.


Subject(s)
Biofilms/growth & development , Caves , Disinfection/methods , Microalgae/growth & development , France , History , Ultraviolet Rays
7.
Sci Total Environ ; 481: 167-77, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24594745

ABSTRACT

The ceasing of industrial activities often reduces the emission of pollutants but also often leaves disturbed areas without remediation and with persistent pollutants that can still be transferred along the food chain. This study examines the potential relationships between non-essential trace metals and histopathology in target tissues of wood mice (Apodemus sylvaticus) collected along a gradient of contamination around the former smelter, Metaleurop Nord (northern France). Cadmium and lead concentrations were measured, and histological alterations attributable to chronic trace metal exposure were assessed in the liver and the kidneys of 78 individuals. Metal concentrations quantified in the present study were among the highest observed for this species. Some histological alterations significantly increased with Cd or Pb concentrations in the soil and in the organs. Sixteen mice from polluted sites were considered at risk for metal-induced stress because their Cd and/or Pb tissue concentrations exceeded the LOAELs for single exposure to these elements. These mice also exhibited a higher severity of histological alterations in their organs than individuals with lower metal burdens. These results indicate that the Metaleurop smelter, despite its closure in 2003, still represents a threat to the local ecosystem because of the high levels and high bioavailability of Cd and Pb in the soil. However, among the mice not considered at risk for metal-induced stress based on the metal levels in their tissues, a large percentage of individuals still exhibited histological alterations. Thus, the present study suggests that the evaluation of toxic effects based only on the LOAELs for single metal exposure may result in the underestimation of the real risks when specimens are exposed to multiple stressors.


Subject(s)
Cadmium/toxicity , Lead/toxicity , Soil Pollutants/toxicity , Animals , Cadmium/analysis , Cadmium/metabolism , Environmental Monitoring , Food Chain , France , Lead/analysis , Lead/metabolism , Metallurgy , Mice , Soil Pollutants/analysis , Soil Pollutants/metabolism
8.
Sci Total Environ ; 470-471: 1012-22, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24239822

ABSTRACT

Partial remediation actions at a former gold mine in Southern France led to a mosaic of contaminated and rehabilitated zones. In this study, the distribution of arsenic and its potential adverse effects on small mammals were investigated. The effectiveness of remediation for reducing the transfer of this element into wildlife was also discussed. Arsenic levels were measured in the soil and in the stomach contents, livers, kidneys, and lungs of four small mammal species (the wood mouse (Apodemus sylvaticus), the Algerian mouse (Mus spretus), the common vole (Microtus arvalis), and the greater white-toothed shrew (Crocidura russula)). The animals were caught at the former extraction site, in zones with three different levels of remediation treatments, and at a control site. Arsenic concentrations in the soil were highly spatially heterogeneous (ranging from 29 to 18,900 µg g(-1)). Despite the decrease in arsenic concentrations in the remediated soils, both wood mice and Algerian mice experienced higher oral exposure to arsenic in remediated zones than in the control area. The accumulated arsenic in their organs showed higher intra-zonal variability than the arsenic distribution in the soil, suggesting that, in addition to remediation processes, other variables can help explain arsenic transfer to wildlife, such as the habitat and diet preferences of the animals or their mobility. A weak but significant correlation between arsenic concentration and body condition was observed, and weak relationships between the liver/kidney/lung mass and arsenic levels were also detected, suggesting possible histological alterations.


Subject(s)
Arsenic/toxicity , Environmental Restoration and Remediation , Mining , Soil Pollutants/toxicity , Animals , Arsenic/analysis , Arvicolinae , Ecosystem , Environmental Monitoring , France , Mammals , Murinae , Shrews , Soil , Soil Pollutants/analysis
9.
PLoS One ; 6(5): e20682, 2011.
Article in English | MEDLINE | ID: mdl-21655187

ABSTRACT

Concepts and developments for a new field in ecotoxicology, referred to as "landscape ecotoxicology," were proposed in the 1990s; however, to date, few studies have been developed in this emergent field. In fact, there is a strong interest in developing this area, both for renewing the concepts and tools used in ecotoxicology as well as for responding to practical issues, such as risk assessment. The aim of this study was to investigate the spatial heterogeneity of metal bioaccumulation in animals in order to identify the role of spatially explicit factors, such as landscape as well as total and extractable metal concentrations in soils. Over a smelter-impacted area, we studied the accumulation of trace metals (TMs: Cd, Pb and Zn) in invertebrates (the grove snail Cepaea sp and the glass snail Oxychilus draparnaudi) and vertebrates (the bank vole Myodes glareolus and the greater white-toothed shrew Crocidura russula). Total and CaCl(2)-extractable concentrations of TMs were measured in soils from woody patches where the animals were captured. TM concentrations in animals exhibited a high spatial heterogeneity. They increased with soil pollution and were better explained by total rather than CaCl(2)-extractable TM concentrations, except in Cepaea sp. TM levels in animals and their variations along the pollution gradient were modulated by the landscape, and this influence was species and metal specific. Median soil metal concentrations (predicted by universal kriging) were calculated in buffers of increasing size and were related to bioaccumulation. The spatial scale at which TM concentrations in animals and soils showed the strongest correlations varied between metals, species and landscapes. The potential underlying mechanisms of landscape influence (community functioning, behaviour, etc.) are discussed. Present results highlight the need for the further development of landscape ecotoxicology and multi-scale approaches, which would enhance our understanding of pollutant transfer and effects in ecosystems.


Subject(s)
Biota , Environmental Monitoring/methods , Metals/metabolism , Soil Pollutants/metabolism
10.
Oecologia ; 164(1): 129-39, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20461413

ABSTRACT

The functional response of predators to prey density variations has previously been investigated in order to understand predation patterns. However, the consequences of functional response on parasite transmission remain largely unexplored. The rodents Microtus arvalis and Arvicola terrestris are the main prey of the red fox Vulpes vulpes in eastern France. These species are intermediate and definitive hosts of the cestode Echinococcus multilocularis. We explored the dietary and contamination responses of the red fox to variations in prey density. The dietary response differed between the two prey species: no response for M. arvalis and a type III-like (sigmoidal) response for A. terrestris that shows possible interference with M. arvalis. The fox contamination response followed a type II shape (asymptotic) for both species. We conclude that fox predation is species specific and E. multilocularis transmission is likely to be regulated by a complex combination of predation and immunologic factors. These results should provide a better understanding of the biological and ecological mechanisms involved in the transmission dynamics of trophically transmitted parasites when multiple hosts are involved. The relevance of the models of parasite transmission should be enhanced if non-linear patterns are taken into account.


Subject(s)
Arvicolinae/parasitology , Echinococcosis/veterinary , Echinococcus multilocularis , Foxes/psychology , Predatory Behavior , Animals , Echinococcosis/transmission , Ecosystem , Feeding Behavior , Foxes/parasitology , France , Population Density
11.
Environ Pollut ; 148(1): 372-9, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17241720

ABSTRACT

We aimed to evaluate whether environmental factors affect the persistence of bromadiolone in baits in field treatment. Baits were distributed in three soils according to two types of distribution: (1) artificial galleries conform to agricultural practices; (2) storage cavities to mimic bait storage by voles. Persistence was evaluated for 30 days in galleries and 80 days in storage cavities in autumn and spring. The decrease of bromadiolone concentrations was described by a first-order kinetic model. In galleries, the half-lives ranged from 3.0 to 5.1 days in autumn and from 5.4 to 6.2 days in spring. The half-lives were similar between soils and seasons but the pattern of persistence differed lightly for two soils between seasons. Half-lives in storage cavities, 42.7 and 24.6 days in autumn and spring respectively, were longer than in galleries. To conclude, both soil characteristics and climatic conditions weakly influence persistence, while bait storage lengthens it dramatically.


Subject(s)
4-Hydroxycoumarins/analysis , Arvicolinae/psychology , Behavior, Animal , Rodenticides/analysis , Soil Pollutants/analysis , Triticum , Agriculture , Animals , Climate , Environmental Monitoring/methods , France , Rodent Control
12.
Environ Res ; 102(3): 291-8, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16616915

ABSTRACT

This paper documents the exposure pattern of a population of small mammals to bromadiolone over time in a field-scale follow up. This is the first assessment of the field-scale effect of such control operation on the availability of bromadiolone-exposed A. terrestris prey to nontarget predator species. It indicates that an important risk of poisoning of nontarget species does exist during large-scale field control operations with bromadiolone, which is contradictory to results obtained from laboratory experiments in the early 1980s and consistent with the secondary poisoning hazards due to repeated exposure regularly reported during the past 20 years.


Subject(s)
4-Hydroxycoumarins/metabolism , Arvicolinae/metabolism , Pesticide Residues/metabolism , Rodenticides/metabolism , 4-Hydroxycoumarins/administration & dosage , Animals , Food Chain , Predatory Behavior , Rodenticides/administration & dosage
13.
Tree Physiol ; 26(6): 759-66, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16510391

ABSTRACT

Sessile oak is a species of great ecological and silvicultural importance in Europe; however, increased frequency and severity of flooding of forested areas pose a threat to its regeneration. We monitored water relations, root anatomical changes and the expression of two calmodulin genes (QpCaM) in sessile oak seedlings during a 14-day flooding treatment. The response followed two characteristic sequences. The first phase, in response to between 1 h and 3 days of flooding, was characterized by a dramatic but transient decline in water relations parameters followed by a recovery towards control values with no noticeable change in root cell morphology. During the second phase, in response to 3 to 14 days of flooding, water relations parameters gradually and continuously declined and hypertrophied lenticels developed at the base of the shoot. Concurrently, root cortical cells became larger and less spherical and the root cortex more porous. These cellular changes were accompanied by a transient rise in root transcript levels of QpCaM-2. We conclude that sessile oak seedlings are capable of withstanding a 3-day period of flooding without significant morphological alterations. In contrast, exposure to flooding for more than 3 days resulted in anatomical and morphological changes in the root system. These changes are, however, insufficient to provide sessile oak with long-term tolerance to flooding.


Subject(s)
Quercus/physiology , Seedlings/physiology , Water , Adaptation, Physiological , Calmodulin/genetics , Calmodulin/metabolism , Diffusion , Disasters , Ecosystem , Osmosis , Plant Leaves/physiology , Plant Roots/anatomy & histology , Plant Roots/physiology , Plant Shoots/physiology , Quercus/anatomy & histology , Quercus/metabolism , Seedlings/anatomy & histology , Seedlings/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...