Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci (China) ; 124: 860-874, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182189

ABSTRACT

Particulate matter (PM2.5) samples were collected in the vicinity of an industrial chemical pole and analysed for organic and elemental carbon (OC and EC), 47 trace elements and around 150 organic constituents. On average, OC and EC accounted for 25.2% and 11.4% of the PM2.5 mass, respectively. Organic compounds comprised polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, anhydrosugars, phenolics, aromatic ketones, glycerol derivatives, aliphatic alcohols, sterols, and carboxyl groups, including aromatic, carboxylic and dicarboxylic acids. Enrichment factors > 100 were obtained for Pb, Cd, Zn, Cu, Sn, B, Se, Bi, Sb and Mo, showing the contribution of industrial emissions and nearby major roads. Principal component analysis revealed that vehicle, industrial and biomass burning emissions accounted for 66%, 11% and 9%, respectively, of the total PM2.5-bound PAHs. Some of the detected organic constituents are likely associated with plasticiser ingredients and thermal stabilisers used in the manufacture of PVC and other plastics in the industrial complex. Photooxidation products of both anthropogenic (e.g., toluene) and biogenic (e.g., isoprene and pinenes) precursors were also observed. It was estimated that biomass burning accounted for 13.8% of the PM2.5 concentrations and that secondary OC represented 37.6% of the total OC. The lifetime cancer risk from inhalation exposure to PM2.5-bound PAHs was found to be negligible, but it exceeded the threshold of 10-6 for metal(loi)s, mainly due to Cr and As.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Trace Elements , Air Pollutants/analysis , Alcohols , Cadmium/analysis , Carbon/analysis , Dicarboxylic Acids/analysis , Environmental Monitoring , Ketones , Lead/analysis , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Polyvinyl Chloride/analysis , Seasons , Sterols/analysis , Toluene/analysis , Trace Elements/analysis , Vehicle Emissions/analysis
2.
Sci Total Environ ; 737: 139596, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32531513

ABSTRACT

Road dust resuspension has a significant contribution to the atmospheric particulate matter levels in urban areas, but loadings, emission factors, and chemical source profiles vary geographically, hampering the accuracy of emission inventories and source contribution estimates. Given the dearth of studies on the variability of road dust, in the present study, an in-situ resuspension chamber was used to collect PM10 samples from seven representative streets in Viana do Castelo, the northernmost coastal city in Portugal. PM10 samples were analysed for organic and elemental carbon by a thermo-optical technique, elemental composition by ICP-MS and ICP-AES, and organic constituents by GC-MS. Emission factors were estimated to be, on average, 340 and 41.2 mg veh-1 km-1 for cobbled and asphalt pavements, respectively. Organic carbon accounted for 5.56 ± 1.24% of the PM10 mass. Very low concentrations of PAHs and their alkylated congeners were detected, denoting a slight predominance of petrogenic compounds. Si, Al, Fe, Ca and K were the most abundant elements. The calculation of various geochemical indices (enrichment factor, geoaccumulation index, pollution index and potential ecological risk) showed that road dust was extremely enriched and contaminated by elements from tyre and brake wear (e.g. Sb, Sn, Cu, Bi and Zn), while lithophile elements showed no enrichment. For As, the geochemical and pollution indices reached their maximum in the street most influenced by agricultural activities. Sb, Cd, Cu and As can pose a very high ecological risk. Sb can be regarded as the pollutant of highest concern, since it represented 57% of the total ecological risk. Hazard indices higher than 1 for some anthropogenic elements indicate that non-carcinogenic effects may occur. Except for a street with more severe braking, the total carcinogenic risks can be considered insignificant.

SELECTION OF CITATIONS
SEARCH DETAIL
...