Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Nutrients ; 13(4)2021 Apr 03.
Article in English | MEDLINE | ID: mdl-33916877

ABSTRACT

The western dietary pattern is known for its frequent meals rich in saturated fat and protein, resulting in a postprandial state for a large part of the day. Therefore, our aim was to investigate the postprandial glucose and lipid metabolism in response to high (HP) or normal (NP) protein, high-fat hypercaloric diet and to identify early biomarkers of protein intake and hepatic lipid accumulation. In a crossover design, 17 healthy subjects were randomly assigned to consume a HP or NP hypercaloric diet for two weeks. In parallel, a control group (CD; n = 10) consumed a weight-maintaining control diet. Biomarkers of postprandial lipid and glucose metabolism were measured in 24 h urine and in plasma before and following a meal challenge. The metabolic profile of urine but not plasma, showed increased excretion of 13C, carnitine and short chain acyl-carnitines after adaptation to the HP diet. Urinary excretion of decatrienoylcarnitine and octenoylcarnitine increased after adaptation to the NP diet. Our results suggest that the higher excretion of short-chain urinary acyl-carnitines could facilitate the elimination of excess fat of the HP diet and thereby reduce hepatic fat accumulation previously reported, whereas the higher excretion medium-chains acyl-carnitine could be early biomarkers of hepatic lipid accumulation.


Subject(s)
Carnitine/analogs & derivatives , Diet, High-Fat/adverse effects , Diet, High-Protein/adverse effects , Diet, Western/adverse effects , Metabolic Syndrome/diagnosis , Adult , Biomarkers/urine , Carnitine/metabolism , Carnitine/urine , Cross-Over Studies , Dietary Fats/adverse effects , Dietary Fats/metabolism , Dietary Proteins/metabolism , Energy Intake/physiology , Female , Glucose/metabolism , Healthy Volunteers , Humans , Lipid Metabolism/physiology , Liver/metabolism , Male , Metabolic Syndrome/etiology , Metabolic Syndrome/metabolism , Metabolic Syndrome/urine , Postprandial Period/physiology , Renal Elimination/physiology , Young Adult
2.
Metabolism ; 97: 57-67, 2019 08.
Article in English | MEDLINE | ID: mdl-31153978

ABSTRACT

BACKGROUND: Muscle atrophy is defined as decreased muscle mass, associated with aging as well as with various chronic diseases and is a fundamental cause of frailty, functional decline and disability. Frailty represents a huge potential public health issue worldwide with high impact on healthcare costs. A major clinical issue is therefore to devise new strategies preventing muscle atrophy. In this study, we tested the efficacy of Vital01, a novel oral nutritional supplement (ONS), on body weight and muscle mass using a caloric restriction-induced mouse model for muscle atrophy. METHODS: Mice were calorically restricted for 2 weeks to induce muscle atrophy: one control group received 60% kcal of the normal chow diet and one intervention group received 30% kcal chow and 30 kcal% Vital01. The effects on body weight, lean body mass, muscle histology and transcriptome were assessed. In addition, the effects of Vital01, in mice with established muscle atrophy, were assessed and compared to a standard ONS. To this end, mice were first calorically restricted on a 60% kcal chow diet and then refed with either 100 kcal% chow, a mix of Vital01 (receiving 60% kcal chow and 40 kcal% Vital01) or with a mix of standard, widely prescribed ONS (receiving 60 kcal% chow and 40 kcal% Fortisip Compact). RESULTS: Vital01 attenuated weight loss (-15% weight loss for Vital01 vs. -25% for control group, p < 0.01) and loss of muscle mass (Vital01 with -13%, -12% and -18%, respectively, for gastrocnemius, quadriceps and tibialis vs. 25%, -23% and -28%, respectively, for control group, all p < 0.05) and also restored body weight, fat and muscle mass more efficiently when compared to Fortisip Compact. As assessed by transcriptome analysis and Western blotting of key proteins (e.g. phospoAKT, mTOR and S6K), Vital01 attenuated the catabolic and anabolic signaling pathways induced by caloric restriction and modulated inflammatory and mitochondrial pathways. In addition, Vital01 affected pathways related to matrix proteins/collagens homeostasis and tended to reduce caloric restriction-induced collagen fiber density in the quadriceps (with -27%, p = 0.051). CONCLUSIONS: We demonstrate that Vital01 preserves muscle mass in a calorically restricted mouse model for muscle atrophy. Vital01 had preventive effects when administered during development of muscle atrophy. Furthermore, when administered in a therapeutic setting to mice with established muscle atrophy, Vital01 rapidly restored body weight and accelerated the recurrence of fat and lean body mass more efficiently than Fortisip Compact. Bioinformatics analysis of gene expression data identified regulatory pathways that were specifically influenced by Vital01 in muscle.


Subject(s)
Body Weight/physiology , Muscle, Skeletal/physiology , Muscular Atrophy/physiopathology , Animals , Body Composition/physiology , Body Mass Index , Caloric Restriction/methods , Dietary Supplements , Disease Models, Animal , Energy Intake/physiology , Male , Mice , Mice, Inbred C57BL , Weight Loss/physiology
3.
J Nutr Sci ; 5: e6, 2016.
Article in English | MEDLINE | ID: mdl-27313851

ABSTRACT

Plasma branched-chain amino acids (BCAA) are elevated in obesity and associated with increased cardiometabolic risk. ß-Aminoisobutyric acid (B-AIBA), a recently identified small molecule metabolite, is associated with decreased cardiometabolic risk. Therefore, we investigated the association of BCAA and B-AIBA with each other and with detailed body composition parameters, including abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). A cross-sectional study was carried out with lean (n 15) and obese (n 33) men and women. Detailed metabolic evaluations, including measures of body composition, insulin sensitivity and plasma metabolomics were completed. Plasma BCAA were higher (1·6 (se 0·08) (×10(7)) v. 1·3 (se 0·06) (×10(7)) arbitrary units; P = 0·005) in obese v. lean subjects. BCAA were positively associated with VAT (R 0·49; P = 0·0006) and trended to an association with SAT (R 0·29; P = 0·052). The association between BCAA and VAT, but not SAT, remained significant after controlling for age, sex and race on multivariate modelling (P < 0·05). BCAA were also associated with parameters of insulin sensitivity (Matsuda index: R -0·50, P = 0·0004; glucose AUC: R 0·53, P < 0·001). BCAA were not associated with B-AIBA (R -0·04; P = 0·79). B-AIBA was negatively associated with SAT (R -0·37; P = 0·01) but only trended to an association with VAT (R 0·27; P = 0·07). However, neither relationship remained significant after multivariate modelling (P > 0·05). Plasma B-AIBA was associated with parameters of insulin sensitivity (Matsuda index R 0·36, P = 0·01; glucose AUC: R -0·30, P = 0·04). Plasma BCAA levels were positively correlated with VAT and markers of insulin resistance. The results suggest a possible complex role of adipose tissue in BCAA homeostasis and insulin resistance.

4.
J Nutr ; 144(9): 1423-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25008579

ABSTRACT

Increasing protein intake and soy consumption appear to be promising approaches to prevent metabolic syndrome (MetS). However, the effect of soy consumption on insulin resistance, glucose homeostasis, and other characteristics of MetS is not frequently studied in humans. We aimed to investigate the effects of a 4-wk, strictly controlled, weight-maintaining, moderately high-protein diet rich in soy on insulin sensitivity and other cardiometabolic risk factors. We performed a randomized crossover trial of 2 4-wk diet periods in 15 postmenopausal women with abdominal obesity to test diets with 22 energy percent (En%) protein, 27 En% fat, and 50 En% carbohydrate. One diet contained protein of mixed origin (mainly meat, dairy, and bread), and the other diet partly replaced meat with soy meat analogues and soy nuts containing 30 g/d soy protein. For our primary outcome, a frequently sampled intravenous glucose tolerance test (FSIGT) was performed at the end of both periods. Plasma total, LDL, and HDL cholesterol, triglycerides, glucose, insulin, and C-reactive protein were assessed, and blood pressure, arterial stiffness, and intrahepatic lipid content were measured at the start and end of both periods. Compared with the mixed-protein diet, the soy-protein diet resulted in greater insulin sensitivity [FSIGT: insulin sensitivity, 34 ± 29 vs. 22 ± 17 (mU/L)(-1) · min(-1), P = 0.048; disposition index, 4974 ± 2543 vs. 2899 ± 1878, P = 0.038; n = 11]. Total cholesterol was 4% lower after the soy-protein diet than after the mixed-protein diet (4.9 ± 0.7 vs. 5.1 ± 0.6 mmol/L, P = 0.001), and LDL cholesterol was 9% lower (2.9 ± 0.7 vs. 3.2 ± 0.6 mmol/L, P = 0.004; n = 15). Thus, partly replacing meat with soy in a moderately high-protein diet has clear advantages regarding insulin sensitivity and total and LDL cholesterol. Therefore, partly replacing meat products with soy products could be important in preventing MetS. This trial was registered at clinicaltrials.gov as NCT01694056.


Subject(s)
Cholesterol, LDL/blood , Cholesterol/blood , Dietary Proteins/therapeutic use , Insulin Resistance , Meat , Obesity, Abdominal/diet therapy , Soybean Proteins/therapeutic use , Aged , Cross-Over Studies , Dietary Proteins/administration & dosage , Dietary Proteins/pharmacology , Energy Intake , Female , Glucose Tolerance Test , Humans , Insulin/blood , Metabolic Syndrome/blood , Metabolic Syndrome/prevention & control , Middle Aged , Obesity, Abdominal/blood , Postmenopause , Soybean Proteins/administration & dosage , Soybean Proteins/pharmacology
5.
J Nutr ; 144(8): 1174-80, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24899158

ABSTRACT

The objective of this study was to evaluate the effect of increasing protein intake, at the expense of carbohydrates, on intrahepatic lipids (IHLs), circulating triglycerides (TGs), and body composition in healthy humans consuming a high-fat, hypercaloric diet. A crossover randomized trial with a parallel control group was performed. After a 2-wk run-in period, participants were assigned to either the control diet [n = 10; 27.8 energy percent (en%) fat, 16.9 en% protein, 55.3 en% carbohydrates] for 4 wk or a high-fat, hypercaloric diet (n = 17; >2 MJ/d) crossover trial with 2 periods of 2 wk, with either high-protein (HP) (37.7 en% fat, 25.7 en% protein, 36.6 en% carbohydrates) or normal-protein (NP) (39.4 en% fat, 15.4 en% protein, 45.2 en% carbohydrates) content. Measurements were performed after 2 wk of run-in (baseline), 2 wk of intervention (period 1), and 4 wk of intervention (period 2). A trend toward lower IHL and plasma TG concentrations during the HP condition compared with the NP condition was observed (IHL: 0.35 ± 0.04% vs. 0.51 ± 0.08%, P = 0.08; TG: 0.65 ± 0.03 vs. 0.77 ± 0.05 mmol/L, P = 0.07, for HP and NP, respectively). Fat mass was significantly lower (10.6 ± 1.72 vs. 10.9 ± 1.73 kg; P = 0.02) with the HP diet than with the NP diet, whereas fat-free mass was higher (55.7 ± 2.79 vs. 55.2 ± 2.80 kg; P = 0.003). This study indicated that an HP, high-fat, hypercaloric diet affects lipid metabolism. It tends to lower the IHL and circulating TG concentrations and significantly lowers fat mass and increases fat-free mass compared with an NP, high-fat, hypercaloric diet. This trail was registered at www.clinicaltrials.gov as NCT01354626.


Subject(s)
Diet, High-Fat , Dietary Proteins/administration & dosage , Energy Intake , Lipid Metabolism , Adipose Tissue , Body Composition , Body Weight , Cross-Over Studies , Dietary Carbohydrates/administration & dosage , Dietary Fats/administration & dosage , Energy Metabolism , Female , Humans , Insulin Resistance , Male , Triglycerides/blood , Young Adult
6.
Appetite ; 55(1): 124-9, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20438782

ABSTRACT

In humans little is known as to whether oral sensory stimulation with alcohol elicits cephalic phase responses. This study sought to determine whether oral alcohol exposure, in the form of white wine, provokes cephalic phase responses in normal-weight and overweight women. In a semi-randomized, crossover trial, eleven normal-weight and eleven overweight women sham-fed, after an overnight fast under three separate conditions 4 weeks apart, cake (750kJ), 25cL white wine (750kJ; approximately 26g alcohol) and 25cL water. Blood was drawn prior to and for 30min after two 3-min episodes of modified sham-feeding (MSF). Blood samples were analyzed for free fatty acid (FFA), triglyceride, glucose, pancreatic polypeptide (PP), insulin and alcohol concentrations. Incremental area under the curves (IAUC) of FFA concentrations differed significantly between the three treatments but not between BMI categories. After MSF with wine, FFA concentrations dropped to a minimum of 77+/-3% of baseline concentrations at t=12+/-2min after baseline and returned to baseline after approximately 30min, whereas after MSF with cake and water, FFA concentrations gradually increased. In conclusion, short-term oral white wine exposure substantially and temporarily decreases FFA concentrations suggesting a cephalic phase response of alcohol. This effect occurred regardless of BMI.


Subject(s)
Digestion/physiology , Fatty Acids, Nonesterified/blood , Wine , Alcohol Drinking , Blood Glucose/analysis , Body Mass Index , Cross-Over Studies , Female , Humans , Insulin/blood , Obesity/blood , Overweight/blood , Postmenopause , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL