Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(2)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36839758

ABSTRACT

Recent studies have shown that the peptide [des-Cys11,Lys12,Lys13-(p-BthTX-I)2K] (p-Bth) is a p-BthTX-I analog that shows enhanced antimicrobial activity, stability and hemolytic activity, and is easy to obtain compared to the wild-type sequence. This molecule also inhibits SARS-CoV-2 viral infection in Vero cells, acting on SARS-CoV-2 PLpro enzymatic activity. Thus, the present study aimed to assess the effects of structural modifications to p-Bth, such as dimerization, dendrimerization and chirality, on the antibacterial activity and inhibitory properties of PLpro. The results showed that the dimerization or dendrimerization of p-Bth was essential for antibacterial activity, as the monomeric structure led to a total loss of, or significant reduction in, bacterial activities. The dimers and tetramers obtained using branched lysine proved to be prominent compounds with antibacterial activity against Gram-positive and Gram-negative bacteria. In addition, hemolysis rates were below 10% at the corresponding concentrations. Conversely, the inhibitory activity of the PLpro of SARS-CoV-2 was similar in the monomeric, dimeric and tetrameric forms of p-Bth. Our findings indicate the importance of the dimerization and dendrimerization of this important class of antimicrobial peptides, which shows great potential for antimicrobial and antiviral drug-discovery campaigns.

2.
Antibiotics (Basel) ; 12(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36830301

ABSTRACT

Antimicrobial resistance poses a major threat to public health. Given the paucity of novel antimicrobials to treat resistant infections, the emergence of multidrug-resistant bacteria renewed interest in antimicrobial peptides as potential therapeutics. This study designed a new analog of the antimicrobial peptide Plantaricin 149 (Pln149-PEP20) based on previous Fmoc-peptides. The minimal inhibitory concentrations of Pln149-PEP20 were determined for 60 bacteria of different species and resistance profiles, ranging from 1 mg/L to 128 mg/L for Gram-positive bacteria and 16 to 512 mg/L for Gram-negative. Furthermore, Pln149-PEP20 demonstrated excellent bactericidal activity within one hour. To determine the propensity to develop resistance to Pln149-PEP20, a directed-evolution in vitro experiment was performed. Whole-genome sequencing of selected mutants with increased MICs and wild-type isolates revealed that most mutations were concentrated in genes associated with membrane metabolism, indicating the most likely target of Pln149-PEP20. Synchrotron radiation circular dichroism showed how this molecule disturbs the membranes, suggesting a carpet mode of interaction. Membrane depolarization and transmission electron microscopy assays supported these two hypotheses, although a secondary intracellular mechanism of action is possible. The molecule studied in this research has the potential to be used as a novel antimicrobial therapy, although further modifications and optimization remain possible.

3.
Front Microbiol ; 12: 622704, 2021.
Article in English | MEDLINE | ID: mdl-33897637

ABSTRACT

Acinetobacter baumannii is an opportunistic pathogen primarily associated with multidrug-resistant nosocomial infections, for which polymyxins are the last-resort antibiotics. This study investigated carbapenem-resistant A. baumannii strains exhibiting an extensively drug-resistant (XDR) phenotype, including four isolates considered locally pan drug-resistant (LPDR), isolated from inpatients during an outbreak at a teaching hospital in Brazil. ApaI DNA macrorestriction followed by PFGE clustered the strains in three pulsotypes, named A to C, among carbapenem-resistant A. baumannii strains. Pulsotypes A and B clustered six polymyxin-resistant A. baumannii strains. MLST analysis of representative strains of pulsotypes A, B, and C showed that they belong, respectively, to sequence types ST1 (clonal complex, CC1), ST79 (CC79), and ST903. Genomic analysis of international clones ST1 and ST79 representative strains predicted a wide resistome for ß-lactams, aminoglycosides, fluoroquinolones, and trimethoprim-sulfamethoxazole, with bla OXA-23 and bla OXA-72 genes encoding carbapenem resistance. Amino acid substitutions in PmrB (Thr232Ile or Pro170Leu) and PmrC (Arg125His) were responsible for polymyxin resistance. Although colistin MICs were all high (MIC ≥ 128 mg/L), polymyxin B MICs varied; strains with Pro170Leu substitution in PmrB had MICs > 128 mg/L, while those with Thr232Ile had lower MICs (16-64 mg/L), irrespective of the clone. Although the first identified polymyxin-resistant A. baumannii strain belonged to ST79, the ST1 strains were endemic and caused the outbreak most likely due to polymyxin B use. The genome comparison of two ST1 strains from the same patient, but one susceptible and the other resistant to polymyxin, revealed mutations in 28 ORFs in addition to pmrBC. The ORF codifying an acyl-CoA dehydrogenase has gained attention due to its fatty acid breakdown and membrane fluidity involvement. However, the role of these mutations in the polymyxin resistance mechanism remains unknown. To prevent the dissemination of XDR bacteria, the hospital infection control committee implemented the patient bathing practice with a 2% chlorhexidine solution, a higher concentration than all A. baumannii chlorhexidine MICs. In conclusion, we showed the emergence of polymyxin resistance due to mutations in the chromosome of the carbapenem-resistant A. baumannii ST1, a high-risk global clone spreading in this hospital.

4.
J Biomater Appl ; 35(3): 301-312, 2020 09.
Article in English | MEDLINE | ID: mdl-32571170

ABSTRACT

Devices such as contact lenses and collagen shields have been used to improve the antibiotic bioavailability of eye drops formulations in the treatment of ulcerative keratitis. Nevertheless, these devices are not sustained drug delivery systems, and a combination with eye drops is necessary. In animal patients, it requires constant supervision by trained personnel to avoid device loss, which increases the cost of treatment. In this study, PVA/anionic collagen membranes containing ciprofloxacin or tobramycin were prepared using two different methodologies, and the release, physical and antimicrobial properties were evaluated. The membrane containing ciprofloxacin was selected as a sustained drug delivery system with antibacterial activity against Staphylococcus aureus and Escherichia coli during 48 h. Despite to be opaque, due to its heterogeneous morphology, this membrane had the adequate mechanical strength, water content, hydrophilicity, water vapor permeability, and surface pH to interact with cornea without causing discomfort. In the surface of this membrane it was observed dispersed collagen fibrils which could serve as a substrate for corneal proteinases, contributing to the reduction in stromal damage and enhancing the epithelium regeneration. These results encourage the idea these membranes are new cost-effective and safe alternatives to treat corneal ulcers in animal patients.


Subject(s)
Anti-Bacterial Agents/chemistry , Ciprofloxacin/chemistry , Collagen/chemistry , Corneal Ulcer/drug therapy , Drug Carriers/chemistry , Ophthalmic Solutions/chemistry , Polyvinyl Alcohol/chemistry , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/chemistry , Ciprofloxacin/pharmacology , Contact Lenses , Cornea/drug effects , Drug Compounding , Escherichia coli/drug effects , Humans , Mechanical Phenomena , Ophthalmic Solutions/pharmacology , Permeability , Staphylococcus aureus/drug effects , Surface Properties , Tobramycin/pharmacology , Water , Wettability
5.
Bioorg Chem ; 86: 550-556, 2019 05.
Article in English | MEDLINE | ID: mdl-30782573

ABSTRACT

Regio and stereoselective activation of sp3 CH bonds remain one of the major advantages of biocatalysis over traditional chemocatalytic methods. Herein, we describe the oxy-functionalization of halimane diterpenoid 1 by whole cells of three filamentous fungi, aiming to obtain derivatives with desirable biological properties. After incubating 1 with Fusarium oxysporum, Myrothecium verrucaria, and Rhinocladiella similis at different concentrations and incubation times, four known (3, 5, 6, and 7) and three new (2, 4, and 8) halimane derivatives were obtained and characterized. F. oxysporum catalyzed the hydroxylation of positions C-2 (2) and C-7 (4), while R. similis simultaneously mediated the 2-oxo-functionalization and the hydration of 13,14-(CC)double bond belonging to an α,ß-unsaturated carbonyl system (8). Compounds 1-7 were non-cytotoxic against HCT-116 and MCF-7 cancer cell lines at tested concentrations. However, substrate 1 displayed moderate reduction ability against biofilm produced by Staphylococcus epidermidis ATCC35984 (84% at 1.6 mM), and this effect was retained to some extent by derivatives 4 and 7. These results emphasize the prominent potential of filamentous fungi associated with the microbiota of medicinal plants as versatile catalysts for singularly useful reactions through their complex enzymatic machinery, as well as the high susceptibility of halimane-diterpenoid substrates.


Subject(s)
Antineoplastic Agents/metabolism , Ascomycota/metabolism , Diterpenes/metabolism , Fusarium/metabolism , Hypocreales/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Ascomycota/cytology , Biofilms/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Diterpenes/chemistry , Diterpenes/pharmacology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Fusarium/cytology , HCT116 Cells , Humans , Hypocreales/cytology , MCF-7 Cells , Molecular Structure , Oxidation-Reduction , Staphylococcus epidermidis/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...