Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Strahlenther Onkol ; 198(6): 558-565, 2022 06.
Article in English | MEDLINE | ID: mdl-35394144

ABSTRACT

AIMS: Proton therapy (PT) represents an advanced form of radiotherapy with unique physical properties which could be of great advantage in reducing long-term radiation morbidity for cancer survivors. Here, we aim to describe the whole process leading to the clinical implementation of consolidative active scanning proton therapy treatment (PT) for mediastinal lymphoma. METHODS: The process included administrative, technical and clinical issues. Authorization of PT is required in all cases as mediastinal lymphoma is currently not on the list of diseases reimbursable by the Italian National Health Service. Technically, active scanning PT treatment for mediastinal lymphoma is complex, due to the interaction between actively scanned protons and the usually irregular and large volumes to be irradiated, the nearby healthy tissues and the target motion caused by breathing. A road map to implement the technical procedures was prepared. The clinical selection of patients was of utmost importance and took into account both patient and tumor characteristics. RESULTS: The first mediastinal lymphoma was treated at our PT center in 2018, four years after the start of the clinical activities. The treatment technique implementation included mechanical deep inspiration breath-hold simulation computed tomography (CT), clinical target volume (CTV)-based multifield optimization planning and plan robustness analysis. The ultimate authorization rate was 93%. In 4 cases a proton-photon plan comparison was required. Between May 2018 and February, 2021, 14 patients were treated with consolidative PT. The main clinical reasons for choosing PT over photons was a bulky disease in 8 patients (57%), patient's age in 11 patients (78%) and the proximity of the lymphoma to cardiac structures in 10 patients (71%). With a median follow-up of 15 months (range, 1-33 months) all patients but one (out-of-field relapse) are without evidence of disease, all are alive and no late toxicities were observed during the follow-up period. CONCLUSIONS: The clinical implementation of consolidative active scanning PT for mediastinal lymphoma required specific technical procedures and a prolonged experience with PT treatments. An accurate selection of patients for which PT could be of advantage in comparison with photons is mandatory.


Subject(s)
Hodgkin Disease , Lymphoma , Mediastinal Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Feasibility Studies , Hodgkin Disease/pathology , Humans , Lymphoma/radiotherapy , Mediastinal Neoplasms/diagnostic imaging , Mediastinal Neoplasms/radiotherapy , Organs at Risk/pathology , Patient Selection , Proton Therapy/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , State Medicine
2.
J Microsc ; 254(3): 157-65, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24749869

ABSTRACT

Nowadays, the implementation of sophisticated in situ electron microscopy tests is providing new insights in several areas. In this work, an in situ high-temperature strain test into a scanning electron microscope was developed. This setup was used to study the grain boundary sliding mechanism and its effect on the ductility dip cracking. This methodology was applied to study the mechanical behaviour of Ni-base filler metal alloys ERNiCrFe-7 and ERNiCr-3, which were evaluated between 700°C and 1000°C. The ductility dip cracking susceptibility (threshold strain; εmin) for both alloys was quantified. The εmin of ERNiCrFe-7 and ERNiCr-3 alloys were 7.5% and 16.5%, respectively, confirming a better resistance of ERNiCr-3 to ductility dip cracking. Furthermore, two separate components of grain boundary sliding, pure sliding (Sp) and deformation sliding (Sd), were identified and quantified. A direct and quantitative link between grain boundary tortuosity, grain boundary sliding and ductility dip cracking resistance has been established for the ERNiCrFe-7 and ERNiCr-3 alloys.

SELECTION OF CITATIONS
SEARCH DETAIL
...