Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Appl Physiol ; 124(7): 1959-1967, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38280015

ABSTRACT

PURPOSE: Prolonged sitting acutely increases arterial stiffness, with interruption strategies only providing limited success in offsetting these rises. Acute aerobic exercise is a potent stimulus to decrease arterial stiffness. However, limited information exists on the effectiveness of acute exercise to maintain arterial stiffness when performed prior to prolonged sitting, particularly within physically active individuals. METHODS: Using a randomized crossover design, 22 young, active individuals (50% female) performed two conditions 30 min of walking at 55-65% of heart rate reserve (EX) and 30 min of standing (STAND) followed by 2.5-h of sitting. Brachial-femoral (bfPWV) and femoral-ankle pulse wave velocity (faPWV) were assessed at Baseline, post-exercise and pre-sitting (Pre), and post-sitting (Post) as estimates of central and peripheral arterial stiffness, respectively. RESULTS: For bfPWV, no interaction, condition, or time effects were observed. For faPWV, an interaction was present (p < 0.001); compared to Baseline, there was a 6.1% decrease for EX (- 0.4 m/s, p < 0.001) and a 4.6% increase for STAND (0.3 m/s, p = 0.016) for STAND such that there was an 11.3% difference between conditions at Pre (0.7 m/s, p < 0.001). From Pre to Post, EX then increased by 11.7% (0.9 m/s p < 0.001) while STAND remained unchanged, resulting in no difference between conditions (0.1 m/s, p = 0.569). CONCLUSIONS: While aerobic exercise resulted in a significant decrease in faPWV prior to sitting, the prior exercise bout did not confer a protective effect against the deleterious effects of uninterrupted sitting. Future work should investigate the combined effect of prior exercise and sitting interruption strategies on markers of arterial stiffness.


Subject(s)
Exercise , Sitting Position , Vascular Stiffness , Humans , Vascular Stiffness/physiology , Female , Male , Exercise/physiology , Adult , Pulse Wave Analysis , Cross-Over Studies , Young Adult
2.
PLoS One ; 18(4): e0284427, 2023.
Article in English | MEDLINE | ID: mdl-37079635

ABSTRACT

BACKGROUND: Breast (BCa) and prostate (PCa) cancer are two of the most common but survivable cancers. One important component of survivorship that is impacted by treatment long term is diminished quality of life (QoL). Supervised exercise improves QoL and subsequent outcomes but is not accessible for all survivors. Additionally, many factors influence QoL including physical activity (PA), cardiorespiratory fitness (CRF), physical function, and fatigue. However, the COVID-19 pandemic has highlighted the need to increase access to exercise beyond supervised exercise facilities. Home-based exercise may provide a feasible alternative for cancer survivors especially for those living in rural communities. OBJECTIVES: The primary aim is to investigate the effects of home-based exercise training (Pre-training vs. Post-training) on QoL in BCa/PCa. A secondary aim is to investigate PA, CRF, physical function, and fatigue and potential moderators (age, cancer-type, intervention duration and type). Home-based exercise trials (randomized crossover or quasi-experimental design) with adults (aged 18 years and over) breast or prostate cancer survivors (not currently undergoing chemotherapy or radiation treatment) were eligible for inclusion. DATA SOURCES: Electronic databases were searched (inception-December 2022) for studies which included adult BCa or PCa survivors (not currently on chemotherapy/radiation), at least measured QoL, and undergoing unsupervised, home-based exercise training. APPRAISAL AND SYNTHESIS METHODS: Initially, 819 studies were identified, from which 17 studies (20 effects) involving 692 participants were extracted. Effect sizes were calculated as standardized mean differences (SMD). Data were pooled using a 3-level model with restricted maximum likelihood estimation. Pooled SMD was used to assess the magnitude of effect, where <0.2, 0.2, 0.5, and 0.8 was defined as trivial, small, moderate, and large respectively. RESULTS: Home-based exercise resulted in small improvements in QoL (SMD = 0.30, 95% CI 0.01, 0.60, p = 0.042), PA (SMD = 0.49, 95% CI 0.26, 0.75, p<0.001) and CRF (SMD = 0.45, 95% CI -0.01, 0.91, p = 0.056). Physical function (SMD = 0.00, 95% CI -0.21, 0.21, p = 1.000) and fatigue (SMD = -0.61, 95%CI -1.53, 0.32, p = 0.198) did not change. CONCLUSIONS: Home-based exercise results in small improves QoL in BCa/PCa survivors, independent of cancer type, intervention duration and type, or age. Home-based exercise also improves PA and CRF enhancing survivorship. Therefore, home-based exercise is an efficacious alternative option to improve QoL for BCa and PCa survivors especially for those who live in rural communities or lack access to exercise facilities.


Subject(s)
Breast Neoplasms , Cancer Survivors , Fatigue , Physical Fitness , Prostatic Neoplasms , Self Care , Adolescent , Adult , Humans , Male , Exercise/physiology , Fatigue/etiology , Fatigue/physiopathology , Fatigue/therapy , Prostatic Neoplasms/complications , Prostatic Neoplasms/physiopathology , Prostatic Neoplasms/therapy , Quality of Life , Breast Neoplasms/complications , Breast Neoplasms/physiopathology , Breast Neoplasms/therapy , Female , Physical Fitness/physiology , Cardiorespiratory Fitness/physiology , Functional Status , Self Care/methods
SELECTION OF CITATIONS
SEARCH DETAIL