Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Soft Matter ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38887036

ABSTRACT

In the last decade, research has focused on examining the fundamental interactions occurring in triglycerides, aiming to comprehend the self-assembly of crystalline nanoplatelets (CNPs) and their role in forming larger hierarchical structures essential for fat functionality. Microscopy research on CNPs frequently requires disruptive preparatory techniques, such as deoiling and sonication, to achieve quantitative outcomes. Conversely, X-ray scattering has proven to be an advantageous method for studying triglycerides, as little sample is needed to quantify the system's hierarchical structures. Specifically, ultra-small-angle X-ray scattering (USAXS) has emerged as a fitting technique for studying CNPs, owing to its length scale range falling between 25 nm and 3.49 µm. In this study, we characterized four different 30% fat dilutions of stearic acid-based fats in triolein, with various purities and preparation protocols. Samples were characterized by combining diverse microscopy techniques (cryo-SEM, TEM, polarized light and phase contrast microscopy) with synchrotron-radiation X-ray scattering (WAXS, SAXS, and USAXS). A shape-dependent model for the interpretation of USAXS data is proposed, overcoming some of the drawbacks linked to previously utilized models. CNPs are modeled as polydisperse parallelepipeds, and the aggregates are characterized by fractal dimensionality. This model offers novel insights into CNP cross-section, as well as aggregation. In the long run, we hope that the model will increase our understanding of CNP conformation and interactions, helping us design new fat systems on the mesoscale.

2.
Food Res Int ; 137: 109412, 2020 11.
Article in English | MEDLINE | ID: mdl-33233099

ABSTRACT

The application of dynamic-crystallization (a combination of shear with rapid cooling) often plays an important role in the production of industrial fat-based products such as shortenings/margarines but has been rarely reported. In this study, three blends of palm oil (PO) with anhydrous milk fat (AMF) (0, 25 and 50% AMF, w/w) were rapidly crystallized under static (using freezer) and dynamic conditions (using a benchtop scraped surface heat exchanger). Various techniques including differential scanning calorimetry (DSC), X-ray diffraction (XRD), polarized light microscopy (PLM), rheology and texture analysis were applied to investigate physicochemical properties of fat blends as well as their crystal morphology upon the long-term storage (4 weeks) at 5 °C and 15 °C. The results revealed that high cooling rate of dynamic-crystallization not only affected melting behavior of fat blends but also prevented the polymorphic transformation from ß' to ß crystals. Besides, the application of shear during fat crystallization helped to improve significantly the gel strength of produced shortenings. Although post-crystallization of low melting triacylglycerols (TAGs) occurred for all produced shortenings during storage at 5 °C which was accompanying with a firmness increase, it was more considerable for samples owning higher AMF content. Moreover, this phenomenon promoted the sintering as well as Ostwald ripening between fat crystals of dynamic-crystallized fat blends resulting in the formation of unwanted large aggregates (or granular crystals) with the size ranging from 100 to 500 µm.


Subject(s)
Milk , Animals , Crystallization , Palm Oil , Triglycerides , X-Ray Diffraction
3.
Chem Phys Lipids ; 230: 104912, 2020 08.
Article in English | MEDLINE | ID: mdl-32371001

ABSTRACT

Phytosterols (PSs) are insoluble in water and poorly soluble in oil, which hampers their potential as cholesterol level regulator in human. To mitigate this problem, monoglycerides (MGs) were used to modulates the crystallization behavior of PSs. Therefore, the understanding on mixing behavior provides the insight into different aspects of crystallization and the resultant effects. The effects on thermal, morphology, diffraction, and spectroscopy behavior were investigated for binary mixtures of 11 different ratios (100:0 to 0:100 MGs:PSs). The phase behavior of binary mixtures of commercial MGs and PSs exhibited complexity with the formation of eutectic mixtures at 90:10 and 80:20 (MGs:PSs) combinations. These combinations revealed a single melting profile and reduced melting enthalpy, though after a month of storage at 5 °C. Conversely, two separate melting regions were observed in others. Furthermore, powder X-ray diffraction (PXRD) analysis of selected combinations revealed a change in crystalline forms with changes in the peaks located between 18-19° (2θ) and 25-26° (2θ). Accordingly, Raman spectroscopy results revealed changes in intensities and peak shape. Therefore, the change in crystalline forms or behavior correlated well to the change in thermal properties. Overall, the characterizations revealed the formation of eutectic mixtures between MGs and PSs at 90:10 and 80:20 (MGs:PSs) in which MGs modified the crystallization of PSs and changed the crystal forms thus, thermal behaviors. This study provides new insight into the mixing behavior of MGs and PSs which supports other research. Therefore, the results of this study are beneficial for the improvement of formulation of phytosterols in food and pharmaceutical products. Nonetheless, this study reveals a simple technique to alter crystal forms of phytosterols through simple complexation with monoglycerides.


Subject(s)
Monoglycerides/chemistry , Phytosterols/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Conformation , Solvents/chemistry
4.
Food Funct ; 9(7): 4036, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29955735

ABSTRACT

Correction for 'Food-grade monoglyceride oil foams: the effect of tempering on foamability, foam stability and rheological properties' by Robbe Heymans et al., Food Funct., 2018, DOI: 10.1039/c8fo00536b.

5.
Food Funct ; 9(6): 3143-3154, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29790526

ABSTRACT

Foams with a continuous oil phase may be stabilized using crystalline particles. Those systems are compelling because of their potential in edible oil structuring, modifying sensorial properties and creating healthier food products. This study aimed to relate oleogel (unwhipped state) properties to oil foam (whipped state) properties using a monoglyceride-sunflower oil model system. The properties of crystal-oil mixtures were influenced by time and temperature during preparation and storage. Therefore, oleogels were prepared using different tempering protocols and their resulting microstructure was investigated with rheology, differential scanning calorimetry and X-ray diffraction. The corresponding oil foams were characterized in terms of foamability and foam stability. The properties of both systems were studied immediately after preparation as well as after 4 weeks of storage. We demonstrated that there is a large influence of the time-temperature history on the foam properties. Partially crystallized mixtures were shown to form weaker structures which capture more air because of their lower viscosity and as crystallization would preferentially take place at the interface. They were characterized by larger bubbles and were less stable and firm. It is proposed that their rheological properties are mainly dominated by interfacial contributions. Fully crystallized and stored monoglyceride-oil mixtures were seen to form stronger gel networks which included less air, contained smaller air bubbles and were stable during storage. It is hypothesized that these samples also included an important bulk gelation contribution.


Subject(s)
Monoglycerides/chemistry , Surface-Active Agents/chemistry , Crystallization , Organic Chemicals/chemistry , Rheology , Temperature , Viscosity , X-Ray Diffraction
6.
J Sci Food Agric ; 98(3): 1042-1051, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28718922

ABSTRACT

BACKGROUND: Wax esters contribute to the transformation of liquid oils into solid-like oleogel systems, which can act as alternatives for trans- and/or saturated fats in food products. The use of solely waxes reduces the solid content, consistency and sensory quality in the final products. Therefore, a combination of sunflower wax and palm fat in rice bran oil was created to accomplish the hybrid low-saturated shortenings and margarines with a compatible structure and lower amounts of saturated fats. RESULTS: During cooling of the hybrid shortenings, sunflower wax crystallized first and acted as nucleation sites for the crystallisation of palm fat. At 5 °C, a mixture of different crystal morphologies (α, ß', and ß crystals) existed in the hybrid shortening. In margarine processing, the hybrid samples were subjected to a simultaneous cooling-emulsification, in which sunflower wax crystallised first at the interface and adsorbed onto the water droplets. Based on the hardness measurements, the maximum amount of palm fat replaceable by 1.0%wt sunflower wax was up to 40% in shortenings and 25% in margarines. A higher amount of sunflower wax (2.5%wt) reduced up to 40% of saturated fats in the hybrid emulsions. CONCLUSION: The addition of 1.0%wt sunflower wax enhanced the solid content and network strength of hybrid palm-based shortenings. Sunflower wax helped to stabilise the water droplets inside the wax-based crystalline network without flocculation during shear-cooling. This research provides fundamental insight into the structuring of hybrid systems containing waxes, which could be interesting for the production of low-saturated fat products in the food industry. © 2017 Society of Chemical Industry.


Subject(s)
Esters/chemistry , Fat Substitutes/chemistry , Margarine/analysis , Rice Bran Oil/analysis , Triglycerides/chemistry , Waxes/chemistry , Food Handling
7.
Food Res Int ; 100(Pt 1): 832-840, 2017 10.
Article in English | MEDLINE | ID: mdl-28873756

ABSTRACT

Monoglycerides (MGs) and phytosterols (PS) are known to form firm oleogels with liquid oil. However, the oleogels are prone to undergo polymorphic transition over time that lead to crystals' aggregation thus, compromises physical properties. Thus, we combined MGs with PS to control the crystallization and modify the morphology of the combination oleogels, as both components are reported to interact together. The oleogels were prepared at different ratio combinations and characterized in their rheological, thermal, morphology, and diffraction properties. The results showed that the 8:2 MGP:PS exhibited higher storage modulus (G') than the MGP mono-component. The combination oleogels exhibited effects on the crystallization and polymorphic transition. Consequently, the effects led to change in the morphology of the combination oleogels which was visualized using optical and electron microscope. The resultant effect on the morphology is associated with crystal defect. Due to observable crystals of MGP and PS, it is speculated that the combination oleogels formed a mixed crystal system. This was confirmed with diffraction analysis in which the corresponding peaks from MGP and PS were observed in the combination oleogels. However, the 8:2 oleogel exhibited additional peak at 35.41Å. Ultimately, the 8:2 was the optimum combination observed in our study. Interestingly, this combination is inspired by nature as sterols (phytosterols) are natural component of lipid membrane whilst MGP has properties similar to phospholipids. Hence, the results of our study not only beneficial for oil structuring, but also for the fields of biophysical and pharmaceutical.


Subject(s)
Monoglycerides/chemistry , Phytosterols/chemistry , Cryoelectron Microscopy , Elasticity , Organic Chemicals/chemistry , Temperature , Viscosity , X-Ray Diffraction
8.
J Colloid Interface Sci ; 504: 387-396, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28586736

ABSTRACT

In order to modify the self-assembly of sucrose esters (SEs) in sunflower oil, we added sunflower lecithin (SFL) as co-surfactant. It is hypothesized that SFL modifies the self-assembly of SEs by interrupting the extensive hydrogen bonding between SEs monomers. The addition of SFL into SEs induced gelation of the mixed surfactant system oleogels at all studied ratios. The 7:3 SEs:SFL combination showed enhanced rheological properties compared to the other studied ratios, which suggests better molecular ordering induced by SFL. The modifications might have been caused by interference in the hydrogen bonding, connecting the polar heads of SEs molecules in the presence of SFL. This effect was confirmed by thermal behavior and small angle X-ray diffraction (SAXD) analysis. From the crystallization and melting analyses, it was shown that the peak temperature, shape and enthalpy decreased as the SFL ratio increases. Meanwhile, the bi-component oleogels exhibited new peaks in the SAXD profile, which imply a self-assembly modification. The microscopic study through polarized and electrons revealed a change in the structure. Therefore, it can be concluded that a synergistic effect between SEs and SFL, more particularly at 7:3 ratio, towards sunflower oil structuring could be obtained. These findings shed light for greater applications of SEs as structuring and carrier agent in foods and pharmaceutical.


Subject(s)
Gels/chemistry , Lecithins/chemistry , Sucrose/chemistry , Sunflower Oil/chemistry , Surface-Active Agents/chemistry , Crystallization , Esters/chemistry , Hydrogen Bonding , X-Ray Diffraction
9.
Res Microbiol ; 164(3): 216-25, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23178175

ABSTRACT

Arginine conversion through the arginine deiminase (ADI) pathway is a common metabolic trait of Lactobacillus sakei which is ascribed to an arc operon and which inquisitively involves citrulline excretion and re-uptake. The aim of this study was to verify whether a putative transport protein (encoded by the PTP gene) plays a role in citrulline-into-ornithine conversion by L. sakei strains. This was achieved through a combination of fermentation experiments, gene expression analysis via quantitative real-time reverse transcription PCR (RT-qPCR) and construction of a PTP knock-out mutant. Expression of the PTP gene was modulated by environmental pH and was highest in the end-exponential or mid-exponential growth phase for L. sakei strains CTC 494 and 23K, respectively. In contrast to known genes of the arc operon, the PTP gene showed low expression at pH 7.0, in agreement with the finding that citrulline-into-ornithine conversion is inhibited at this pH. The presence of additional energy sources also influenced ADI pathway activity, in particular by decreasing citrulline-into-ornithine conversion. Further insight into the functionality of the PTP gene was obtained with a knock-out mutant of L. sakei CTC 494 impaired in the PTP gene, which displayed inhibition in its ability to convert extracellular citrulline into ornithine. In conclusion, results indicated that the PTP gene may putatively encode a citrulline/ornithine antiporter.


Subject(s)
Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Citrulline/metabolism , Hydrolases/metabolism , Lactobacillus/genetics , Lactobacillus/metabolism , Arginine/metabolism , Bacterial Proteins/genetics , Biological Transport, Active , Carrier Proteins/genetics , Gene Expression , Gene Expression Regulation, Bacterial , Gene Knockout Techniques , Hydrogen-Ion Concentration , Mutation , Ornithine/biosynthesis
10.
Microbiologyopen ; 1(1): 25-32, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22950009

ABSTRACT

Acetobacter pasteurianus, a Gram-negative bacterium belonging to the α-divison of Proteobacteria, produces acetic acid through ethanol oxidation. A genomic bank of A. pasteurianus 386B DNA was cloned in the low-copy cosmid pRG930Cm vector and the resulting clones were screened for the production of protease using the skimmed-milk agar assay whereby a clearing zone around the inoculated spots indicates casein degradation. Several positive clones were selected and restriction analysis revealed that many contained the same inserts. One clone was further analyzed and the cosmid DNA subjected to in vitro transposon insertion. After electroporation, several clones having lost the capacity to cause casein degradation were isolated and the sequence of the transposon-flanking regions analyzed. The majority of insertions mapped to one gene encoding an NAD(P)(+)-dependent aldehyde dehydrogenase (ALDH) of the PNTB superfamily, whereas one insert was found upstream in a gene encoding an ethanol dehydrogenase. Addition of phenol red to the medium confirmed the ethanol-dependent acidification around the inoculated spots of the clones without transposon insertion, suggesting that casein degradation is due to the production of acetic acid as a result of the combined activities of the alcohol dehydrogenase and ALDH. Quantitative data and pH measurements confirmed a significant acidification, and the presence of acetic acid.

11.
Appl Microbiol Biotechnol ; 93(6): 2519-27, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21993480

ABSTRACT

Certain lactic acid bacteria, especially heterofermentative strains, are capable to produce mannitol under adequate culture conditions. In this study, mannitol production by Lactobacillus reuteri CRL 1101 and Lactobacillus fermentum CRL 573 in modified MRS medium containing a mixture of fructose and glucose in a 6.5:1.0 ratio was investigated during batch fermentations with free pH and constant pH 6.0 and 5.0. Mannitol production and yields were higher under constant pH conditions compared with fermentations with free pH, the increase being more pronounced in the case of the L. fermentum strain. Maximum mannitol production and yields from fructose for L. reuteri CRL 1101 (122 mM and 75.7 mol%, respectively) and L. fermentum CRL 573 (312 mM and 93.5 mol%, respectively) were found at pH 5.0. Interestingly, depending on the pH conditions, fructose was used only as an alternative external electron acceptor or as both electron acceptor and energy source in the case of the L. reuteri strain. In contrast, L. fermentum CRL 573 used fructose both as electron acceptor and carbon source simultaneously, independently of the pH value, which strongly affected mannitol production by this strain. Studies on the metabolism of these relevant mannitol-producing lactobacilli provide important knowledge to either produce mannitol to be used as food additive or to produce it in situ during fermented food production.


Subject(s)
Limosilactobacillus fermentum/metabolism , Limosilactobacillus reuteri/metabolism , Mannitol/metabolism , Culture Media/metabolism , Fermentation , Fructose/metabolism , Hydrogen-Ion Concentration
12.
Appl Environ Microbiol ; 77(10): 3406-12, 2011 May.
Article in English | MEDLINE | ID: mdl-21460118

ABSTRACT

Sourdough is a very competitive and challenging environment for microorganisms. Usually, a stable microbiota composed of lactic acid bacteria (LAB) and yeasts dominates this ecosystem. Although sourdough is rich in carbohydrates, thus providing an ideal environment for microorganisms to grow, its low pH presents a particular challenge. The nature of the adaptation to this low pH was investigated for Lactobacillus plantarum IMDO 130201, an isolate from a laboratory wheat sourdough fermentation. Batch fermentations were carried out in wheat sourdough simulation medium, and total RNA was isolated from mid-exponential-growth-phase cultures, followed by differential gene expression analysis using a LAB functional gene microarray. At low pH values, an increased expression of genes involved in peptide and amino acid metabolism was found as well as that of genes involved in plantaricin production and lipoteichoic acid biosynthesis. The results highlight cellular mechanisms that allow L. plantarum to function at a low environmental pH.


Subject(s)
Adaptation, Physiological , Culture Media/chemistry , Food Microbiology , Gene Expression , Lactobacillus plantarum/physiology , Gene Expression Profiling , Hydrogen-Ion Concentration , Lactobacillus plantarum/growth & development , Lactobacillus plantarum/metabolism , Microarray Analysis , Triticum/metabolism
13.
Appl Environ Microbiol ; 77(8): 2716-26, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21335386

ABSTRACT

Sourdough fermentation is a cereal fermentation that is characterized by the formation of stable yeast/lactic acid bacteria (LAB) associations. It is a unique process among food fermentations in that the LAB that mostly dominate these fermentations are heterofermentative. In the present study, four wheat sourdough fermentations were carried out under different conditions of temperature and backslopping time to determine their effect on the composition of the microbiota of the final sourdoughs. A substantial effect of temperature was observed. A fermentation with 10 backsloppings (once every 24 h) at 23°C resulted in a microbiota composed of Leuconostoc citreum as the dominant species, whereas fermentations at 30 and 37°C with backslopping every 24 h resulted in ecosystems dominated by Lactobacillus fermentum. Longer backslopping times (every 48 h at 30°C) resulted in a combination of Lactobacillus fermentum and Lactobacillus plantarum. Residual maltose remained present in all fermentations, except those with longer backslopping times, and ornithine was found in almost all fermentations, indicating enhanced sourdough-typical LAB activity. The sourdough-typical species Lactobacillus sanfranciscensis was not found. Finally, a nonflour origin for this species was hypothesized.


Subject(s)
Bread/microbiology , Edible Grain/metabolism , Edible Grain/microbiology , Fermentation , Metagenome , Triticum/metabolism , Colony Count, Microbial , DNA, Bacterial/genetics , Flour/microbiology , Food Microbiology , Lactic Acid/metabolism , Limosilactobacillus fermentum/genetics , Limosilactobacillus fermentum/isolation & purification , Limosilactobacillus fermentum/metabolism , Lactobacillus plantarum/genetics , Lactobacillus plantarum/isolation & purification , Lactobacillus plantarum/metabolism , Leuconostoc/genetics , Leuconostoc/isolation & purification , Leuconostoc/metabolism , Maltose/metabolism , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Saccharomyces cerevisiae/metabolism , Temperature , Time Factors , Triticum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...