Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
JAMA Oncol ; 10(3): 362-371, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38236590

ABSTRACT

Importance: Adding fulvestrant to anastrozole (A+F) improved survival in postmenopausal women with advanced estrogen receptor (ER)-positive/ERBB2 (formerly HER2)-negative breast cancer. However, the combination has not been tested in early-stage disease. Objective: To determine whether neoadjuvant fulvestrant or A+F increases the rate of pathologic complete response or ypT1-2N0/N1mic/Ki67 2.7% or less residual disease (referred to as endocrine-sensitive disease) over anastrozole alone. Design, Setting, and Participants: A phase 3 randomized clinical trial assessing differences in clinical and correlative outcomes between each of the fulvestrant-containing arms and the anastrozole arm. Postmenopausal women with clinical stage II to III, ER-rich (Allred score 6-8 or >66%)/ERBB2-negative breast cancer were included. All analyses were based on data frozen on March 2, 2023. Interventions: Patients received anastrozole, fulvestrant, or a combination for 6 months preoperatively. Tumor Ki67 was assessed at week 4 and optionally at week 12, and if greater than 10% at either time point, the patient switched to neoadjuvant chemotherapy or immediate surgery. Main Outcomes and Measures: The primary outcome was the endocrine-sensitive disease rate (ESDR). A secondary outcome was the percentage change in Ki67 after 4 weeks of neoadjuvant endocrine therapy (NET) (week 4 Ki67 suppression). Results: Between February 2014 and November 2018, 1362 female patients (mean [SD] age, 65.0 [8.2] years) were enrolled. Among the 1298 evaluable patients, ESDRs were 18.7% (95% CI, 15.1%-22.7%), 22.8% (95% CI, 18.9%-27.1%), and 20.5% (95% CI, 16.8%-24.6%) with anastrozole, fulvestrant, and A+F, respectively. Compared to anastrozole, neither fulvestrant-containing regimen significantly improved ESDR or week 4 Ki67 suppression. The rate of week 4 or week 12 Ki67 greater than 10% was 25.1%, 24.2%, and 15.7% with anastrozole, fulvestrant, and A+F, respectively. Pathologic complete response/residual cancer burden class I occurred in 8 of 167 patients and 17 of 167 patients, respectively (15.0%; 95% CI, 9.9%-21.3%), after switching to neoadjuvant chemotherapy due to week 4 or week 12 Ki67 greater than 10%. PAM50 subtyping derived from RNA sequencing of baseline biopsies available for 753 patients (58%) identified 394 luminal A, 304 luminal B, and 55 nonluminal tumors. A+F led to a greater week 4 Ki67 suppression than anastrozole alone in luminal B tumors (median [IQR], -90.4% [-95.2 to -81.9%] vs -76.7% [-89.0 to -55.6%]; P < .001), but not luminal A tumors. Thirty-six nonluminal tumors (65.5%) had a week 4 or week 12 Ki67 greater than 10%. Conclusions and Relevance: In this randomized clinical trial, neither fulvestrant nor A+F significantly improved the 6-month ESDR over anastrozole in ER-rich/ERBB2-negative breast cancer. Aromatase inhibition remains the standard-of-care NET. Differential NET response by PAM50 subtype in exploratory analyses warrants further investigation. Trial Registration: ClinicalTrials.gov Identifier: NCT01953588.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Aged , Female , Humans , Anastrozole/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Breast Neoplasms/pathology , Fulvestrant , Ki-67 Antigen , Neoadjuvant Therapy , Nitriles/adverse effects , Postmenopause , Receptor, ErbB-2 , Receptors, Estrogen , Triazoles/adverse effects , Triple Negative Breast Neoplasms/drug therapy , Middle Aged
2.
Science ; 381(6662): eabn4180, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37676964

ABSTRACT

Despite substantial advances in targeting mutant KRAS, tumor resistance to KRAS inhibitors (KRASi) remains a major barrier to progress. Here, we report proteostasis reprogramming as a key convergence point of multiple KRASi-resistance mechanisms. Inactivation of oncogenic KRAS down-regulated both the heat shock response and the inositol-requiring enzyme 1α (IRE1α) branch of the unfolded protein response, causing severe proteostasis disturbances. However, IRE1α was selectively reactivated in an ER stress-independent manner in acquired KRASi-resistant tumors, restoring proteostasis. Oncogenic KRAS promoted IRE1α protein stability through extracellular signal-regulated kinase (ERK)-dependent phosphorylation of IRE1α, leading to IRE1α disassociation from 3-hydroxy-3-methylglutaryl reductase degradation (HRD1) E3-ligase. In KRASi-resistant tumors, both reactivated ERK and hyperactivated AKT restored IRE1α phosphorylation and stability. Suppression of IRE1α overcame resistance to KRASi. This study reveals a druggable mechanism that leads to proteostasis reprogramming and facilitates KRASi resistance.


Subject(s)
Antineoplastic Agents , Drug Resistance, Neoplasm , Endoribonucleases , Enzyme Inhibitors , Extracellular Signal-Regulated MAP Kinases , Heat Shock Transcription Factors , Neoplasms , Proteostasis , Proto-Oncogene Proteins p21(ras) , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Enzyme Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Heat Shock Transcription Factors/metabolism
3.
Cancer Res Commun ; 3(8): 1551-1563, 2023 08.
Article in English | MEDLINE | ID: mdl-37587913

ABSTRACT

Triple-negative breast cancer (TNBC) constitutes 10%-15% of all breast tumors. The current standard of care is multiagent chemotherapy, which is effective in only a subset of patients. The original objective of this study was to deploy a mass spectrometry (MS)-based kinase inhibitor pulldown assay (KIPA) to identify kinases elevated in non-pCR (pathologic complete response) cases for therapeutic targeting. Frozen optimal cutting temperature compound-embedded core needle biopsies were obtained from 43 patients with TNBC before docetaxel- and carboplatin-based neoadjuvant chemotherapy. KIPA was applied to the native tumor lysates that were extracted from samples with high tumor content. Seven percent of all identified proteins were kinases, and none were significantly associated with lack of pCR. However, among a large population of "off-target" purine-binding proteins (PBP) identified, seven were enriched in pCR-associated samples (P < 0.01). In orthogonal mRNA-based TNBC datasets, this seven-gene "PBP signature" was associated with chemotherapy sensitivity and favorable clinical outcomes. Functional annotation demonstrated IFN gamma response, nuclear import of DNA repair proteins, and cell death associations. Comparisons with standard tandem mass tagged-based discovery proteomics performed on the same samples demonstrated that KIPA-nominated pCR biomarkers were unique to the platform. KIPA is a novel biomarker discovery tool with unexpected utility for the identification of PBPs related to cytotoxic drug response. The PBP signature has the potential to contribute to clinical trials designed to either escalate or de-escalate therapy based on pCR probability. Significance: The identification of pretreatment predictive biomarkers for pCR in response to neoadjuvant chemotherapy would advance precision treatment for TNBC. To complement standard proteogenomic discovery profiling, a KIPA was deployed and unexpectedly identified a seven-member non-kinase PBP pCR-associated signature. Individual members served diverse pathways including IFN gamma response, nuclear import of DNA repair proteins, and cell death.


Subject(s)
Antineoplastic Agents , Triple Negative Breast Neoplasms , Humans , Carrier Proteins , Triple Negative Breast Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Docetaxel , Purines
4.
Cell Rep ; 42(8): 112821, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37467106

ABSTRACT

Aberrant activation of the forkhead protein FOXA1 is observed in advanced hormone-related cancers. However, the key mediators of high FOXA1 signaling remain elusive. We demonstrate that ectopic high FOXA1 (H-FOXA1) expression promotes estrogen receptor-positive (ER+) breast cancer (BC) metastasis in a xenograft mouse model. Mechanistically, H-FOXA1 reprograms ER-chromatin binding to elicit a core gene signature (CGS) enriched in ER+ endocrine-resistant (EndoR) cells. We identify Secretome14, a CGS subset encoding ER-dependent cancer secretory proteins, as a strong predictor for poor outcomes of ER+ BC. It is elevated in ER+ metastases vs. primary tumors, irrespective of ESR1 mutations. Genomic ER binding near Secretome14 genes is also increased in mutant ER-expressing or mitogen-treated ER+ BC cells and in ER+ metastatic vs. primary tumors, suggesting a convergent pathway including high growth factor receptor signaling in activating pro-metastatic secretome genes. Our findings uncover H-FOXA1-induced ER reprogramming that drives EndoR and metastasis partly via an H-FOXA1/ER-dependent secretome.

5.
Clin Cancer Res ; 29(16): 3101-3109, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37195235

ABSTRACT

PURPOSE: Clinical trials reported 25% to 30% pathologic complete response (pCR) rates in HER2+ patients with breast cancer treated with anti-HER2 therapies without chemotherapy. We hypothesize that a multiparameter classifier can identify patients with HER2-"addicted" tumors who may benefit from a chemotherapy-sparing strategy. EXPERIMENTAL DESIGN: Baseline HER2+ breast cancer specimens from the TBCRC023 and PAMELA trials, which included neoadjuvant treatment with lapatinib and trastuzumab, were used. In the case of estrogen receptor-positive (ER+) tumors, endocrine therapy was also administered. HER2 protein and gene amplification (ratio), HER2-enriched (HER2-E), and PIK3CA mutation status were assessed by dual gene protein assay (GPA), research-based PAM50, and targeted DNA-sequencing. GPA cutoffs and classifier of response were constructed in TBCRC023 using a decision tree algorithm, then validated in PAMELA. RESULTS: In TBCRC023, 72 breast cancer specimens had GPA, PAM50, and sequencing data, of which 15 had pCR. Recursive partitioning identified cutoffs of HER2 ratio ≥ 4.6 and %3+ IHC staining ≥ 97.5%. With PAM50 and sequencing data, the model added HER2-E and PIK3CA wild-type (WT). For clinical implementation, the classifier was locked as HER2 ratio ≥ 4.5, %3+ IHC staining ≥ 90%, and PIK3CA-WT and HER2-E, yielding 55% and 94% positive (PPV) and negative (NPV) predictive values, respectively. Independent validation using 44 PAMELA cases with all three biomarkers yielded 47% PPV and 82% NPV. Importantly, our classifier's high NPV signifies its strength in accurately identifying patients who may not be good candidates for treatment deescalation. CONCLUSIONS: Our multiparameter classifier differentially identifies patients who may benefit from HER2-targeted therapy alone from those who need chemotherapy and predicts pCR to anti-HER2 therapy alone comparable with chemotherapy plus dual anti-HER2 therapy in unselected patients.


Subject(s)
Breast Neoplasms , Female , Humans , Antineoplastic Combined Chemotherapy Protocols , Biomarkers, Tumor/metabolism , Breast Neoplasms/diagnosis , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Lapatinib , Neoadjuvant Therapy , Quinazolines , Receptor, ErbB-2/metabolism , Trastuzumab , Treatment Outcome
6.
Future Oncol ; 19(16): 1099-1112, 2023 May.
Article in English | MEDLINE | ID: mdl-37170847

ABSTRACT

Several anti-HER2 agents are approved for third-line treatment and beyond (after first-line and second-line); however, no specific treatment strategy is recommended for third-line and beyond. Although these agents improve disease outcomes, HER2-positive metastatic breast cancer remains incurable and there is an unmet need for effective therapies in the later line setting. This review focuses on the development of margetuximab-cmkb, a novel, Fc-engineered, anti-HER2 monoclonal antibody, and its role in the systemic treatment of adult patients with metastatic HER2-positive breast cancer who have received two or more prior anti-HER2 regimens, at least one of which was for metastatic disease.


In about 20% of patients with breast cancer, their tumor cells make too many copies of a protein called HER2. We call them HER2-positive breast cancer cells. HER2 is a protein that signals to breast cancer cells to make them grow. Certain drugs, known as antibodies, are able to bind to the HER2 proteins on the surface of the tumor cells. This stops their signaling and slows down the growth of the tumor cells. These antibodies are called anti-HER2 antibodies. In addition to its 'head' region binding to HER2, the 'tail' region of the anti-HER2 antibody can bind to certain other proteins (receptors) found on the surface of immune cells. When the anti-HER2 antibodies bind to the receptors on immune cells, this starts an anticancer immune response against the HER2-positive breast cancer cells and kills them. This review explains how anti-HER2 antibodies may block and destroy HER2-positive breast cancer cells. In particular, we focus on the beneficial and adverse effects of margetuximab, an anti-HER2 antibody. The tail region of margetuximab has been changed to boost the immune responses against HER2-positive cancer cells. Margetuximab is approved in the USA for patients with HER2-positive metastatic breast cancer after they have already received two or more anti-HER2 therapies. The decision to approve this was based on the pivotal clinical trial SOPHIA.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Neoplasms, Second Primary , Adult , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/chemically induced , Receptor, ErbB-2 , Antibodies, Monoclonal/adverse effects , Antineoplastic Agents/adverse effects , Neoplasms, Second Primary/chemically induced , Trastuzumab/therapeutic use
7.
JCO Oncol Pract ; 19(8): 539-546, 2023 08.
Article in English | MEDLINE | ID: mdl-37207306

ABSTRACT

Trastuzumab deruxtecan (T-DXd) is an antibody drug conjugate with a topoisomerase I payload that targets the human epidermal growth factor receptor 2 (HER2). T-DXd is approved for patients with previously treated HER2-positive or HER2-low (immunohistochemistry [IHC] 1+ or IHC 2+/ISH-) metastatic/unresectable breast cancer (BC). In a second-line HER2-positive metastatic BC (mBC) population (DESTINY-Breast03 [ClinicalTrials.gov identifier: NCT03529110]), T-DXd demonstrated significantly improved progression-free survival (PFS) over ado-trastuzumab emtansine (12-month rate: 75.8% v 34.1%; hazard ratio, 0.28; P < .001), and in patients with HER2-low mBC treated with one prior line of chemotherapy (DESTINY-Breast04 [ClinicalTrials.gov identifier: NCT03734029]), T-DXd demonstrated significantly longer PFS and overall survival than physician's choice chemotherapy (10.1 v 5.4 months; hazard ratio, 0.51; P < .001, and 23.4 v 16.8 months; hazard ratio, 0.64; P < .001, respectively).Interstitial lung disease (ILD) is an umbrella term used for a group of diseases characterized by lung injury including pneumonitis, which can lead to irreversible lung fibrosis. ILD is a well-described adverse event associated with certain anticancer therapies, including T-DXd. An important part of T-DXd therapy for mBC consists of monitoring for and managing ILD. Although information on ILD management strategies is included in the prescribing information, additional information on patient selection, monitoring, and treatment can be beneficial in routine clinical practice. The objective of this review is to describe real-world, multidisciplinary clinical practices and institutional protocols used for patient selection/screening, monitoring, and management related to T-DXd-associated ILD.


Subject(s)
Breast Neoplasms , Immunoconjugates , Lung Diseases, Interstitial , Pneumonia , Humans , Female , Breast Neoplasms/complications , Breast Neoplasms/drug therapy , Antibodies, Monoclonal, Humanized/adverse effects , Immunoconjugates/adverse effects , Lung Diseases, Interstitial/chemically induced , Lung Diseases, Interstitial/drug therapy , Pneumonia/chemically induced , Pneumonia/drug therapy
8.
medRxiv ; 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36945501

ABSTRACT

Purpose: To examine circulating tumor DNA (ctDNA) and its association with residual cancer burden (RCB) using an ultrasensitive assay in patients with triple-negative breast cancer (TNBC) receiving neoadjuvant chemotherapy (NAT). Patients and Methods: We identified responders (RCB-0/1) and matched non-responders (RCB-2/3) from the phase II TBCRC 030 prospective study of neoadjuvant paclitaxel vs. cisplatin in TNBC. We collected plasma samples at baseline, three weeks, and twelve weeks (end of therapy). We created personalized ctDNA assays utilizing MAESTRO mutation enrichment sequencing. We explored associations between ctDNA and RCB status and disease recurrence. Results: Of 139 patients, 68 had complete samples and no additional NAT. Twenty-two were responders and 19 of those had sufficient tissue for whole-genome sequencing. We identified an additional 19 non-responders for a matched case-control analysis of 38 patients using a MAESTRO ctDNA assay tracking 319-1000 variants (median 1000) to 114 plasma samples from 3 timepoints. Overall, ctDNA positivity was 100% at baseline, 79% at week 3, and 55% at week 12. Median tumor fraction (TFx) was 3.7 × 10 -4 (range: 7.9 × 10 -7 to 4.9 × 10 -1 ). TFx decreased 285-fold from baseline to week 3 in responders and 24-fold in non-responders. Week 12 ctDNA clearance correlated with RCB: clearance was observed in 10/11 patients with RCB-0, 3/8 with RCB-1, 4/15 with RCB-2, and 0/4 with RCB-3. Among 6 patients with known recurrence five had persistent ctDNA at week 12. Conclusion: NAT for TNBC reduced ctDNA TFx by 285-fold in responders and 24-fold in non-responders. In 58% (22/38) of patients, ctDNA TFx dropped below the detection level of a commercially available test, emphasizing the need for sensitive tests. Additional studies will determine if ctDNA-guided approaches can improve outcomes.

9.
iScience ; 26(1): 105799, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36619972

ABSTRACT

Although systemic chemotherapy remains the standard of care for TNBC, even combination chemotherapy is often ineffective. The identification of biomarkers for differential chemotherapy response would allow for the selection of responsive patients, thus maximizing efficacy and minimizing toxicities. Here, we leverage TNBC PDXs to identify biomarkers of response. To demonstrate their ability to function as a preclinical cohort, PDXs were characterized using DNA sequencing, transcriptomics, and proteomics to show consistency with clinical samples. We then developed a network-based approach (CTD/WGCNA) to identify biomarkers of response to carboplatin (MSI1, TMSB15A, ARHGDIB, GGT1, SV2A, SEC14L2, SERPINI1, ADAMTS20, DGKQ) and docetaxel (c, MAGED4, CERS1, ST8SIA2, KIF24, PARPBP). CTD/WGCNA multigene biomarkers are predictive in PDX datasets (RNAseq and Affymetrix) for both taxane- (docetaxel or paclitaxel) and platinum-based (carboplatin or cisplatin) response, thereby demonstrating cross-expression platform and cross-drug class robustness. These biomarkers were also predictive in clinical datasets, thus demonstrating translational potential.

10.
Clin Cancer Res ; 29(8): 1468-1476, 2023 04 14.
Article in English | MEDLINE | ID: mdl-36716289

ABSTRACT

PURPOSE: In PERTAIN's primary analysis (31 months' median follow-up), adding pertuzumab to trastuzumab and an aromatase inhibitor (AI) with/without chemotherapy significantly improved progression-free survival (PFS) in patients with previously untreated HER2-positive and hormone receptor-positive metastatic or locally advanced breast cancer (M/LABC). A potentially enhanced treatment effect was observed in patients with no induction chemotherapy. We present the final analysis (>6 years' median follow-up). PATIENTS AND METHODS: Patients (N = 258) were randomized 1:1 to pertuzumab (loading/maintenance: 840/420 mg) plus trastuzumab (loading/maintenance: 8/6 mg/kg) every 3 weeks and an AI (1 mg anastrozole or 2.5 mg letrozole daily; Arm A), or trastuzumab and an AI (Arm B). Induction chemotherapy was at investigator discretion. Primary endpoint: PFS. Key secondary endpoints: overall survival (OS) and safety. RESULTS: Median PFS was 20.6 versus 15.8 months in Arms A and B, respectively (stratified HR, 0.67; P = 0.006). Median OS was 60.2 versus 57.2 months (stratified HR, 1.05; P = 0.78). Pertuzumab treatment effect was potentially enhanced in patients with no induction chemotherapy (26.6 vs. 12.5 months). Any-grade adverse events (AE) occurred in 122 patients per arm (96.1% vs. 98.4%); grade ≥ 3 AEs in 72 (56.7%) and 51 (41.1%); serious AEs in 46 (36.2%) and 28 (22.6%). CONCLUSIONS: The PFS benefit of pertuzumab was maintained and OS was similar between arms at final analysis. Adding pertuzumab may enhance activity in patients who do not require first-line chemotherapy for M/LABC. No new safety concerns were reported. These data provide additional evidence of the role of first-line pertuzumab and trastuzumab in HER2-positive M/LABC.


Subject(s)
Breast Neoplasms , Humans , Female , Trastuzumab , Breast Neoplasms/pathology , Aromatase Inhibitors/adverse effects , Receptor, ErbB-2 , Antineoplastic Combined Chemotherapy Protocols/adverse effects
11.
Nat Cancer ; 4(1): 128-147, 2023 01.
Article in English | MEDLINE | ID: mdl-36585450

ABSTRACT

The AURORA US Metastasis Project was established with the goal to identify molecular features associated with metastasis. We assayed 55 females with metastatic breast cancer (51 primary cancers and 102 metastases) by RNA sequencing, tumor/germline DNA exome and low-pass whole-genome sequencing and global DNA methylation microarrays. Expression subtype changes were observed in ~30% of samples and were coincident with DNA clonality shifts, especially involving HER2. Downregulation of estrogen receptor (ER)-mediated cell-cell adhesion genes through DNA methylation mechanisms was observed in metastases. Microenvironment differences varied according to tumor subtype; the ER+/luminal subtype had lower fibroblast and endothelial content, while triple-negative breast cancer/basal metastases showed a decrease in B and T cells. In 17% of metastases, DNA hypermethylation and/or focal deletions were identified near HLA-A and were associated with reduced expression and lower immune cell infiltrates, especially in brain and liver metastases. These findings could have implications for treating individuals with metastatic breast cancer with immune- and HER2-targeting therapies.


Subject(s)
Mammary Neoplasms, Animal , Triple Negative Breast Neoplasms , Female , Animals , Humans , Multiomics , Breast , Triple Negative Breast Neoplasms/genetics , DNA Methylation/genetics , Mammary Neoplasms, Animal/genetics , Epigenesis, Genetic/genetics , Tumor Microenvironment/genetics
12.
Cancer Discov ; 12(11): 2586-2605, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36001024

ABSTRACT

Microscaled proteogenomics was deployed to probe the molecular basis for differential response to neoadjuvant carboplatin and docetaxel combination chemotherapy for triple-negative breast cancer (TNBC). Proteomic analyses of pretreatment patient biopsies uniquely revealed metabolic pathways, including oxidative phosphorylation, adipogenesis, and fatty acid metabolism, that were associated with resistance. Both proteomics and transcriptomics revealed that sensitivity was marked by elevation of DNA repair, E2F targets, G2-M checkpoint, interferon-gamma signaling, and immune-checkpoint components. Proteogenomic analyses of somatic copy-number aberrations identified a resistance-associated 19q13.31-33 deletion where LIG1, POLD1, and XRCC1 are located. In orthogonal datasets, LIG1 (DNA ligase I) gene deletion and/or low mRNA expression levels were associated with lack of pathologic complete response, higher chromosomal instability index (CIN), and poor prognosis in TNBC, as well as carboplatin-selective resistance in TNBC preclinical models. Hemizygous loss of LIG1 was also associated with higher CIN and poor prognosis in other cancer types, demonstrating broader clinical implications. SIGNIFICANCE: Proteogenomic analysis of triple-negative breast tumors revealed a complex landscape of chemotherapy response associations, including a 19q13.31-33 somatic deletion encoding genes serving lagging-strand DNA synthesis (LIG1, POLD1, and XRCC1), that correlate with lack of pathologic response, carboplatin-selective resistance, and, in pan-cancer studies, poor prognosis and CIN. This article is highlighted in the In This Issue feature, p. 2483.


Subject(s)
Proteogenomics , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Carboplatin , Proteomics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoadjuvant Therapy , X-ray Repair Cross Complementing Protein 1
14.
Clin Cancer Res ; 28(1): 163-174, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34645649

ABSTRACT

PURPOSE: To determine (i) the relationship between candidate biomarkers of the antiproliferative (Ki67) response to letrozole and palbociclib alone and combined in ER+/HER2- breast cancer; and (ii) the pharmacodynamic effect of the agents on the biomarkers. EXPERIMENTAL DESIGN: 307 postmenopausal women with ER+/HER2- primary breast cancer were randomly assigned to neoadjuvant treatment with letrozole for 14 weeks; letrozole for 2 weeks, then letrozole+palbociclib to 14 weeks; palbociclib for 2 weeks, then letrozole+palbociclib to 14 weeks; or letrozole+palbociclib for 14 weeks. Biopsies were taken at baseline, 2 and 14 weeks and surgery at varying times after stopping palbociclib. Immunohistochemical analyses were conducted for Ki67, c-PARP, ER, PgR, RB1, CCNE1, and CCND1. RESULTS: Higher baselines ER and PgR were significantly associated with a greater chance of complete cell-cycle arrest (CCCA: Ki67 <2.7%) at 14 weeks and higher baseline Ki67, c-PARP, and CCNE1 with a lower chance. The interaction with treatment was significant only for c-PARP. CCND1 levels were decreased c.20% by letrozole at 2 and 14 weeks but showed a tendency to increase with palbociclib. CCNE1 levels fell 82% (median) in tumors showing CCCA but were unchanged in those with no CCCA. Only 2/9 tumors showed CCCA 3-9 days after stopping palbociclib. ESR1 mutations were found in 2/4 tumors for which surgery took place ≥6 months after starting treatment. CONCLUSIONS: High CCNE1 levels were confirmed as a biomarker of resistance to letrozole+palbociclib. Ki67 recovery within 3-9 days of discontinuing palbociclib indicates incomplete suppression of proliferation during the "off" week of its schedule.


Subject(s)
Breast Neoplasms , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Biomarkers, Tumor/genetics , Biomarkers, Tumor/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Humans , Letrozole/therapeutic use , Piperazines , Pyridines , Receptor, ErbB-2/analysis , Receptors, Estrogen/analysis , Receptors, Estrogen/genetics
17.
Breast Cancer Res Treat ; 190(2): 189-201, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34515904

ABSTRACT

Estrogen receptor (ER) is the major driver of most metastatic breast cancers (mBCs). Endocrine therapy (ET) is the most effective treatment for ER + mBC, but its effectiveness is limited by high rates of de novo and acquired resistance. A growing understanding of the biological characteristics and complexity of the ER pathway and the mechanisms of ET resistance has led to the development of a new generation of targeted therapies. One such mechanism is the cell cycle signaling pathways, which lead to the development of cyclin-dependent kinase 4/6 inhibitors (CDK4/6is) that have, in turn, transformed the management of such tumors. Another important mechanism is the alteration of the phosphatidylinositol 3'-kinase/AKT/mammalian target of rapamycin pathway. Drugs targeting each component of these pathways are currently used in clinical practice, and several more are in development. As a result, a myriad of new targeted therapies are consistently being added to the clinical oncologist armamentarium. Navigating the evolving and highly complex treatment landscape of HR + /HER2- mBC remains both an art and a challenge. In this review, we discuss the biological features of HR + /HER2- mBC and the different mechanisms of resistance to ET. We also discuss the management of mBC as the disease changes from endocrine-sensitive to endocrine-resistant.


Subject(s)
Breast Neoplasms , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Epidermal Growth Factor , Female , Humans , Phosphatidylinositol 3-Kinase , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptors, Estrogen/genetics , Signal Transduction
18.
Breast Cancer Res Treat ; 189(1): 187-202, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34173924

ABSTRACT

PURPOSE: Patients with triple-negative breast cancer (TNBC) who do not achieve pathological complete response (pCR) following neoadjuvant chemotherapy have a high risk of recurrence and death. Molecular characterization may identify patients unlikely to achieve pCR. This neoadjuvant trial was conducted to determine the pCR rate with docetaxel and carboplatin and to identify molecular alterations and/or immune gene signatures predicting pCR. EXPERIMENTAL DESIGN: Patients with clinical stages II/III TNBC received 6 cycles of docetaxel and carboplatin. The primary objective was to determine if neoadjuvant docetaxel and carboplatin would increase the pCR rate in TNBC compared to historical expectations. We performed whole-exome sequencing (WES) and immune profiling on pre-treatment tumor samples to identify alterations that may predict pCR. Thirteen matching on-treatment samples were also analyzed to assess changes in molecular profiles. RESULTS: Fifty-eight of 127 (45.7%) patients achieved pCR. There was a non-significant trend toward higher mutation burden for patients with residual cancer burden (RCB) 0/I versus RCB II/III (median 80 versus 68 variants, p 0.88). TP53 was the most frequently mutated gene, observed in 85.7% of tumors. EGFR, RB1, RAD51AP2, SDK2, L1CAM, KPRP, PCDHA1, CACNA1S, CFAP58, COL22A1, and COL4A5 mutations were observed almost exclusively in pre-treatment samples from patients who achieved pCR. Seven mutations in PCDHA1 were observed in pre-treatment samples from patients who did not achieve pCR. Several immune gene signatures including IDO1, PD-L1, interferon gamma signaling, CTLA4, cytotoxicity, tumor inflammation signature, inflammatory chemokines, cytotoxic cells, lymphoid, PD-L2, exhausted CD8, Tregs, and immunoproteasome were upregulated in pre-treatment samples from patients who achieved pCR. CONCLUSION: Neoadjuvant docetaxel and carboplatin resulted in a pCR of 45.7%. WES and immune profiling differentiated patients with and without pCR. TRIAL REGISTRATION: Clinical trial information: NCT02124902, Registered 24 April 2014 & NCT02547987, Registered 10 September 2015.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Carboplatin/therapeutic use , Docetaxel/therapeutic use , Female , Humans , Neoadjuvant Therapy , Neoplasm Recurrence, Local , Treatment Outcome , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics
19.
Cancer Med ; 10(14): 4790-4795, 2021 07.
Article in English | MEDLINE | ID: mdl-34080777

ABSTRACT

OBJECTIVE: The goal was to compare the 5-year DFS and 5-year OS in patients with early-stage human epidermal growth factor receptor 2 breast cancer (HER2+ BC) and triple-negative breast cancer (TNBC) in relation to the amount of stromal tumor-infiltrating lymphocytes (TILs) after locoregional management by either mastectomy without radiation or lumpectomy and whole-breast radiotherapy (RT). METHODS: This was a retrospective review of HER2+ BC and TNBC patients' charts and histopathology slides with clinical stage of T1-T2 N0 who presented at our facility between January 2009 and December 2019. Locoregional treatment included either mastectomy without RT (M) or lumpectomy with RT (L+R). TILs were assessed by three pathologists using the guidelines of the 2014 TILs working group. A competing risk model and Kaplan-Meier analysis were used to analyze correlations between TILs levels and clinical outcome. RESULTS: We reviewed 211 patients' charts. Of them, 190 proceeded to the final analysis. Patients were split into groups of "low TILs" and "high TILs" based on a 50% TILs cut-off. Of them 26% had high TILs, 48% received RT, 97% received chemotherapy, all HER2+ BC patients received HER2-directed therapy and all HER2+ BC that were also hormone receptor positive (HR+) received endocrine therapy (ET). In patient with low TILs, L+R did not improve outcomes compared to M. Moreover, patients with high TILs had a significant improvement of their DFS and OS with L+R when compared to M. CONCLUSION: The results of our study reflect that a selected group of HER2+ BC and TNBC with elevated TILs, L+R is associated with improvement of 5-year DFS and 5-year OS.


Subject(s)
Breast Neoplasms , Lymphocytes, Tumor-Infiltrating , Mastectomy, Segmental , Receptor, ErbB-2 , Adult , Age Factors , Aged , Aged, 80 and over , Antineoplastic Agents/therapeutic use , Breast Neoplasms/chemistry , Breast Neoplasms/immunology , Breast Neoplasms/mortality , Breast Neoplasms/therapy , Combined Modality Therapy/methods , Combined Modality Therapy/mortality , Disease-Free Survival , Female , Humans , Kaplan-Meier Estimate , Mastectomy/mortality , Mastectomy, Segmental/mortality , Middle Aged , Neoplasm Recurrence, Local , Neoplasm Staging , Radiotherapy/mortality , Retrospective Studies , Time Factors , Triple Negative Breast Neoplasms/chemistry , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/mortality , Triple Negative Breast Neoplasms/therapy
20.
NPJ Breast Cancer ; 7(1): 63, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34045483

ABSTRACT

Lapatinib (L) plus trastuzumab (T), with endocrine therapy for estrogen receptor (ER)+ tumors, but without chemotherapy, yielded meaningful response in HER2+ breast cancer (BC) neoadjuvant trials. The irreversible/pan-HER inhibitor neratinib (N) has proven more potent than L. However, the efficacy of N+T in comparison to pertuzumab (P) + T or L + T (without chemotherapy) remains less studied. To address this, mice bearing HER2+ BT474-AZ (ER+) cell and BCM-3963 patient-derived BC xenografts were randomized to vehicle, N, T, P, N+T, or P+T, with simultaneous estrogen deprivation for BT474-AZ. Time to tumor regression/progression and incidence/time to complete response (CR) were determined. Changes in key HER pathway and proliferative markers were assessed by immunohistochemistry and western blot of short-term-treated tumors. In the BT474-AZ model, while all N, P, T, N + T, and P + T treated tumors regressed, N + T-treated tumors regressed faster than P, T, and P + T. Further, N + T was superior to N and T alone in accelerating CR. In the BCM-3963 model, which was refractory to T, P, and P + T, while N and N + T yielded 100% CR, N + T accelerated the CR compared to N. Ki67, phosphorylated (p) AKT, pS6, and pERK levels were largely inhibited by N and N + T, but not by T, P, or P + T. Phosphorylated HER receptor levels were also markedly inhibited by N and N + T, but not by P + T or L + T. Our findings establish the efficacy of combining N with T and support clinical testing to investigate the efficacy of N + T with or without chemotherapy in the neoadjuvant setting for HER2+ BC.

SELECTION OF CITATIONS
SEARCH DETAIL
...