Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 281
Filter
1.
iScience ; 27(3): 109271, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38487013

ABSTRACT

The application of single-cell technologies in clinical nephrology remains elusive. We generated an atlas of transcriptionally defined cell types and cell states of human kidney disease by integrating single-cell signatures reported in the literature with newly generated signatures obtained from 5 patients with acute kidney injury. We used this information to develop kidney-specific cell-level information ExtractoR (K-CLIER), a transfer learning approach specifically tailored to evaluate the role of cell types/states on bulk RNAseq data. We validated the K-CLIER as a reliable computational framework to obtain a dimensionality reduction and to link clinical data with single-cell signatures. By applying K-CLIER on cohorts of patients with different kidney diseases, we identified the most relevant cell types associated with fibrosis and disease progression. This analysis highlighted the central role of altered proximal tubule cells in chronic kidney disease. Our study introduces a new strategy to exploit the power of single-cell technologies toward clinical applications.

2.
Mucosal Immunol ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38447907

ABSTRACT

OM-85 is a bacterial lysate used in clinical practice to reduce duration and frequency of recurrent respiratory tract infections. Whereas knowledge of its regulatory effects in vivo has substantially advanced, the mechanisms of OM-85 sensing remain inadequately addressed. Here, we show that the immune response to OM-85 in the mouse is largely mediated by myeloid immune cells through Toll-like receptor (TLR) 4 in vitro and in vivo. Instead, in human immune cells, TLR2 and TLR4 orchestrate the response to OM-85, which binds to both receptors as shown by surface plasmon resonance assay. Ribonucleic acid-sequencing analyses of human monocyte-derived dendritic cells reveal that OM-85 triggers a pro-inflammatory signature and a unique gene set, which is not induced by canonical agonists of TLR2 or TLR4 and comprises tolerogenic genes. A largely overlapping TLR2/4-dependent gene signature was observed in individual subsets of primary human airway myeloid cells, highlighting the robust effects of OM-85. Collectively, our results suggest caution should be taken when relating murine studies on bacterial lysates to humans. Furthermore, our data shed light on how a standardized bacterial lysate shapes the response through TLR2 and TLR4, which are crucial for immune response, trained immunity, and tolerance.

3.
RMD Open ; 10(1)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395454

ABSTRACT

OBJECTIVES: Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease affecting mainly the axial skeleton. Peripheral involvement (arthritis, enthesitis and dactylitis) and extra-musculoskeletal manifestations, including uveitis, psoriasis and bowel inflammation, occur in a relevant proportion of patients. AS is responsible for chronic and severe back pain caused by local inflammation that can lead to osteoproliferation and ultimately spinal fusion. The association of AS with the human leucocyte antigen-B27 gene, together with elevated levels of chemokines, CCL17 and CCL22, in the sera of patients with AS, led us to study the role of CCR4+ T cells in the disease pathogenesis. METHODS: CD8+CCR4+ T cells isolated from the blood of patients with AS (n=76) or healthy donors were analysed by multiparameter flow cytometry, and gene expression was evaluated by RNA sequencing. Patients with AS were stratified according to the therapeutic regimen and current disease score. RESULTS: CD8+CCR4+ T cells display a distinct effector phenotype and upregulate the inflammatory chemokine receptors CCR1, CCR5, CX3CR1 and L-selectin CD62L, indicating an altered migration ability. CD8+CCR4+ T cells expressing CX3CR1 present an enhanced cytotoxic profile, expressing both perforin and granzyme B. RNA-sequencing pathway analysis revealed that CD8+CCR4+ T cells from patients with active disease significantly upregulate genes promoting osteogenesis, a core process in AS pathogenesis. CONCLUSIONS: Our results shed light on a new molecular mechanism by which T cells may selectively migrate to inflammatory loci, promote new bone formation and contribute to the pathological ossification process observed in AS.


Subject(s)
Spondylitis, Ankylosing , Humans , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/metabolism , Osteogenesis/genetics , T-Lymphocyte Subsets/metabolism , CD8-Positive T-Lymphocytes/metabolism , Inflammation
4.
JACC Cardiovasc Imaging ; 17(2): 149-161, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37480903

ABSTRACT

BACKGROUND: Cardiac magnetic resonance (CMR) plays a pivotal diagnostic role in myocardial infarction with nonobstructive coronary arteries (MINOCA). To date, a prognostic stratification of these patients is still lacking. OBJECTIVES: This study aims to assess the prognostic role of CMR in MINOCA. METHODS: The authors assessed 437 MINOCA from January 2017 to October 2021. They excluded acute myocarditis, takotsubo syndromes, cardiomyopathies, and other nonischemic etiologies. Patients were classified into 3 subgroups according to the CMR phenotype: 1) presence of late gadolinium enhancement (LGE) and abnormal mapping (M) values (LGE+/M+); 2) regional ischemic injury with abnormal mapping and no LGE (LGE-/M+); and 3) nonpathological CMRs (LGE-/M-). The primary outcome was the presence of major adverse cardiovascular events (MACE). The mean follow-up was 33.7 ± 12.0 months and CMR was performed on average at 4.8 ± 1.5 days from the acute presentation. RESULTS: The final cohort included 198 MINOCA; 116 (58.6%) comprised the LGE+/M+ group. During follow-up, MACE occurred significantly more frequently in MINOCA LGE+/M+ than in the LGE+/M- and normal-CMR (LGE-/M-) subgroups (20.7% vs 6.7% and 2.7%; P = 0.006). The extension of myocardial damage at CMR was significantly greater in patients who developed MACE. In multivariable Cox regression, %LGE was an independent predictor of MACE (HR: 1.123 [95% CI: 1.064-1.185]; P < 0.001) together with T2 mapping values (HR: 1.190 [95% CI: 1.145-1.237]; P = 0.001). CONCLUSIONS: In MINOCA with early CMR execution, the %LGE and abnormal T2 mapping values were identified as independent predictors of adverse cardiac events at ∼3.0 years of follow-up. These parameters can be considered as high-risk markers in MINOCA.


Subject(s)
MINOCA , Myocardial Infarction , Humans , Prognosis , Contrast Media , Magnetic Resonance Imaging, Cine , Predictive Value of Tests , Gadolinium , Myocardial Infarction/etiology , Magnetic Resonance Spectroscopy/adverse effects
5.
Mol Cancer Ther ; 23(3): 368-380, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38052765

ABSTRACT

BTK and PI3K inhibitors are among the drugs approved for the treatment of patients with lymphoid neoplasms. Although active, their ability to lead to long-lasting complete remission is rather limited, especially in the lymphoma setting. This indicates that tumor cells often develop resistance to the drugs. We started from a marginal zone lymphoma cell line, Karpas-1718, kept under prolonged exposure to the PI3Kδ inhibitor idelalisib until acquisition of resistance, or with no drug. Cells underwent transcriptome, miRNA and methylation profiling, whole-exome sequencing, and pharmacologic screening, which led to the identification of the overexpression of ERBB4 and its ligands HBEGF and NRG2 in the resistant cells. Cellular and genetic experiments demonstrated the involvement of this axis in blocking the antitumor activity of various BTK/PI3K inhibitors, currently used in the clinical setting. Addition of recombinant HBEGF induced resistance to BTK/PI3K inhibitors in parental cells and in additional lymphoma models. Combination with the ERBB inhibitor lapatinib was beneficial in resistant cells and in other lymphoma models already expressing the identified resistance factors. An epigenetic reprogramming sustained the expression of the resistance-related factors, and pretreatment with demethylating agents or EZH2 inhibitors overcame the resistance. Resistance factors were also shown to be expressed in clinical specimens. In conclusion, we showed that the overexpression of ERBB4 and its ligands represents a novel mechanism of resistance for lymphoma cells to bypass the antitumor activity of BTK and PI3K inhibitors and that targeted pharmacologic interventions can restore sensitivity to the small molecules.


Subject(s)
Antineoplastic Agents , Lymphoma, B-Cell , Humans , Phosphatidylinositol 3-Kinases/pharmacology , Cell Line, Tumor , Signal Transduction , Lymphoma, B-Cell/pathology , Lapatinib/pharmacology , Lapatinib/therapeutic use , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Drug Resistance, Neoplasm , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Receptor, ErbB-4/pharmacology
6.
Biomedicines ; 11(12)2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38137370

ABSTRACT

The use of hypoxic devices among athletes who train in normobaric hypoxia has become increasingly popular; however, the acute effects on heart and brain metabolism are not yet fully understood. This study aimed to investigate the mitochondrial bioenergetics in trained male and female Wistar rats after acute hypoxia training. The experimental plan included exercising for 30 min on a treadmill in a Plexiglas cage connected to a hypoxic generator set at 12.5% O2 or in normoxia. After the exercise, the rats were sacrificed, and their mitochondria were isolated from their brains and hearts. The bioenergetics for each complex of the electron transport chain was tested using a Clark-type electrode. The results showed that following hypoxia training, females experienced impaired oxidative phosphorylation through complex II in heart subsarcolemmal mitochondria, while males had an altered ADP/O in heart interfibrillar mitochondria, without any change in oxidative capacity. No differences from controls were evident in the brain, but an increased electron transport system efficiency was observed with complex I and IV substrates in males. Therefore, the study's findings suggest that hypoxia training affects the heart mitochondria of females more than males. This raises a cautionary flag for female athletes who use hypoxic devices.

7.
Sci Adv ; 9(48): eadj8016, 2023 12.
Article in English | MEDLINE | ID: mdl-38019923

ABSTRACT

How the multiple facets of soil fungal diversity vary worldwide remains virtually unknown, hindering the management of this essential species-rich group. By sequencing high-resolution DNA markers in over 4000 topsoil samples from natural and human-altered ecosystems across all continents, we illustrate the distributions and drivers of different levels of taxonomic and phylogenetic diversity of fungi and their ecological groups. We show the impact of precipitation and temperature interactions on local fungal species richness (alpha diversity) across different climates. Our findings reveal how temperature drives fungal compositional turnover (beta diversity) and phylogenetic diversity, linking them with regional species richness (gamma diversity). We integrate fungi into the principles of global biodiversity distribution and present detailed maps for biodiversity conservation and modeling of global ecological processes.


Subject(s)
Ecosystem , Soil , Humans , Fungi/genetics , Phylogeny , Soil Microbiology , Biodiversity
8.
bioRxiv ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38014209

ABSTRACT

Purpose: The transmembrane protein CD37 is expressed almost exclusively in lymphoid tissues, with the highest abundance in mature B cells. CD37-directed antibody- and, more recently, cellular-based approaches have shown preclinical and promising early clinical activity. Naratuximab emtansine (Debio 1562, IMGN529) is an antibodydrug conjugate (ADC) that incorporates an anti-CD37 monoclonal antibody conjugated to the maytansinoid DM1 as payload. Naratuximab emtansine has shown activity as a single agent and in combination with the anti-CD20 monoclonal antibody rituximab in B cell lymphoma patients. Experimental Design: We assessed the activity of naratuximab emtansine using in vitro models of lymphomas, correlated its activity with CD37 expression levels, characterized two resistance mechanisms to the ADC, and identified combination partners providing synergy. Results: The anti-tumor activity of naratuximab emtansine was tested in 54 lymphoma cell lines alongside its free payload. The median IC 50 of naratuximab emtansine was 780 pM, and the activity, primarily cytotoxic, was more potent in B than in T cell lymphoma cell lines. In the subgroup of cell lines derived from B cell lymphoma, there was some correlation between sensitivity to DM1 and sensitivity to naratuximab emtansine (r=0.28, P = 0.06). After prolonged exposure to the ADC, one diffuse large B cell lymphoma (DLBCL) cell line developed resistance to the ADC due to the biallelic loss of the CD37 gene. After CD37 loss, we also observed upregulation of IL6 (IL-6) and other transcripts from MYD88/IL6-signaling. Recombinant IL6 led to resistance to naratuximab emtansine, while the anti-IL6 antibody tocilizumab improved the cytotoxic activity of the ADC in CD37-positive cells. In a second model, resistance was sustained by an activating mutation in the PIK3CD gene, associated with increased sensitivity to PI3K δ inhibition and a switch from functional dependence on the anti-apoptotic protein MCL1 to reliance on BCL2. The addition of idelalisib or venetoclax to naratuximab emtansine overcame resistance to the ADC in the resistant derivative while also improving the cytotoxic activity of the ADC in the parental cells. Conclusions: Targeting B cell lymphoma with the CD37 targeting ADC naratuximab emtansine showed vigorous anti-tumor activity as a single agent, which was also observed in models bearing genetic lesions associated with inferior outcomes, such as MYC translocations and TP53 inactivation or resistance to R-CHOP. Resistance DLBCL models identified active combinations of naratuximab emtansine with drugs targeting IL6, PI3K δ , and BCL2. Despite notable progress in recent decades, we still face challenges in achieving a cure for a substantial number of lymphoma patients (1,2). A pertinent example is diffuse large B cell lymphoma (DLBCL), the most prevalent type of lymphoma (3). More than half of DLBCL patients can achieve remission, but around 40% of them experience refractory disease or relapse following an initial positive response (3). Regrettably, the prognosis for many of these cases remains unsatisfactory despite introducing the most recent antibody-based or cellular therapies (3,4), underscoring the importance of innovating new therapeutic strategies and gaining insights into the mechanisms of therapy resistance. CD37 is a transmembrane glycoprotein belonging to the tetraspanin family, primarily expressed on the surface of immune cells, principally in mature B cells but also, at lower levels, in T cells, macrophages/monocytes, granulocytes and dendritic cells (5) (6-8). CD37 plays a crucial role in various immune functions, including B cell activation, proliferation, and signaling, although its precise role still needs to be fully elucidated. CD37 interacts with multiple molecules, including SYK, LYN, CD19, CD22, PI3K δ , PI3K γ , and different integrins, among others (6-8). In mice, the lack of CD37 is paired with reduced T cell-dependent antibody-secreting cells and memory B cells, apparently due to the loss of CD37-mediated clustering of α 4 ß 1 integrins (VLA-4) on germinal center B cells and decreased downstream activation of PI3K/AKT signaling and cell survival (5). Reflecting the expression pattern observed in normal lymphocytes, CD37 exhibits elevated expression in all mature B-cell lymphoid neoplasms, including most lymphoma subtypes, and absence in early progenitor cells or terminally differentiated plasma cells (6,8-14). In DLBCL, CD37 expression has been reported between 40% and 90% of cases across multiple studies performed using different antibodies (10,14-16). CD37-directed antibody- and, more recently, cellular-based approaches have shown preclinical (7,10-14,17-23) and early promising clinical activity (24-32). Among the CD37-targeting agents, naratuximab emtansine (Debio 1562, IMGN529) is an antibody-drug conjugate (ADC) that incorporates the anti-CD37 humanized IgG1 monoclonal antibody K7153A conjugated to the maytansinoid DM1, as payload, via the thioether linker, N-succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) (10). Based on the initial in vitro and in vivo evidence of anti-tumor activity in lymphoma and chronic lymphocytic leukemia (CLL) (7,10), naratuximab emtansine entered the clinical evaluation as a single agent. The phase 1 study exploring naratuximab emtansine enrolled 39 patients with relapsed/refractory B cell lymphoma (27). The overall response rate (ORR) was 13% across all patients and 22% in DLBCL patients, including the only observed complete remission (CR) (27). In preliminary results of a phase 2 trial exploring the combination of naratuximab emtansine with the anti-CD20 monoclonal antibody rituximab (18), based on positive preclinical data (18), the ORR was 45% in 76 patients with DLBCL with 24 CRs (32%), 57% in 14 patients with follicular lymphoma (five CR), 50% in four MCL patients (2 CR) (31). Here, we studied the pattern of activity of naratuximab emtansine across a large panel of cell lines derived from DLBCL and other lymphoma subtypes and characterized two resistance mechanisms to the ADC.

9.
G Ital Cardiol (Rome) ; 24(11): 880-892, 2023 Nov.
Article in Italian | MEDLINE | ID: mdl-37901979

ABSTRACT

Myocardial revascularization, either percutaneous or surgical, is the cornerstone of chronic and acute ischemic coronary artery disease therapy. Periprocedural myocardial injury and infarction are possible complications of these procedures. Several pathogenetic mechanisms have been proposed in the setting of percutaneous (distal embolism, vasospasm, obstruction of a minor vessel) or surgical revascularization (prolonged ischemic time, early graft failure, arrhythmia or severe hypotension during the procedure). High-sensitivity cardiac troponins have emerged as the recommended biomarkers due to their important prognostic implications. However, data regarding diagnostic criteria, management and prognostic implications of these complications are lacking. The present review aims to provide an overview regarding the possible diagnostic criteria, management and prognostic role of periprocedural myocardial injury and infarction.


Subject(s)
Coronary Artery Disease , Heart Injuries , Myocardial Infarction , Myocardial Ischemia , Percutaneous Coronary Intervention , Humans , Myocardial Infarction/diagnosis , Myocardial Infarction/epidemiology , Myocardial Infarction/etiology , Incidence , Coronary Artery Disease/therapy , Myocardial Revascularization , Myocardial Ischemia/etiology , Myocardial Ischemia/complications , Prognosis , Percutaneous Coronary Intervention/adverse effects , Treatment Outcome
10.
Front Cell Dev Biol ; 11: 1232963, 2023.
Article in English | MEDLINE | ID: mdl-37842084

ABSTRACT

Introduction: Progressive Tau deposition in neurofibrillary tangles and neuropil threads is the hallmark of tauopathies, a disorder group that includes Alzheimer's disease. Since Tau is a microtubule-associated protein, a prevalent concept to explain the pathogenesis of tauopathies is that abnormal Tau modification contributes to dissociation from microtubules, assembly into multimeric ß-sheets, proteotoxicity, neuronal dysfunction and cell loss. Tau also localizes in the cell nucleus and evidence supports an emerging function of Tau in DNA stability and epigenetic modulation. Methods: To better characterize the possible role of Tau in regulation of chromatin compaction and subsequent gene expression, we performed a bioinformatics analysis of transcriptome data obtained from Tau-depleted human neuroblastoma cells. Results: Among the transcripts deregulated in a Tau-dependent manner, we found an enrichment of target genes for the polycomb repressive complex 2. We further describe decreased cellular amounts of the core components of the polycomb repressive complex 2 and lower histone 3 trimethylation in Tau deficient cells. Among the de-repressed polycomb repressive complex 2 target gene products, IGFBP3 protein was found to be linked to increased senescence induction in Tau-deficient cells. Discussion: Our findings propose a mechanism for Tau-dependent epigenetic modulation of cell senescence, a key event in pathologic aging.

11.
J Clin Med ; 12(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37685754

ABSTRACT

Background: the prognosis of patients with myocardial infarction with non-obstructive coronary arteries (MINOCA) is not benign; thus, prompting the need to validate prognostic scoring systems for this population. Aim: to evaluate and compare the prognostic performance of GRACE, TIMI, HEART, and ACEF scores in MINOCA patients. Methods: A total of 250 MINOCA patients from January 2017 to September 2021 were included. For each patient, the four scores at admission were retrospectively calculated. The primary outcome was a composite of all-cause death and acute myocardial infarction (AMI) at 1-year follow-up. The ability to predict 1-year all-cause death was also tested. Results: Overall, the tested scores presented a sub-optimal performance in predicting the composite major adverse event in MINOCA patients, showing an AUC ranging between 0.7 and 0.8. Among them, the GRACE score appeared to be the best in predicting all-cause death, reaching high specificity with low sensitivity. The best cut-off identified for the GRACE score was 171, higher compared to the cut-off of 140 generally applied to identify high-risk patients with obstructive AMI. When the scores were tested for prediction of 1-year all-cause death, the GRACE and the ACEF score showed very good accuracy (AUC = 0.932 and 0.828, respectively). Conclusion: the prognostic scoring tools, validated in AMI cohorts, could be useful even in MINOCA patients, although their performance appeared sub-optimal, prompting the need for risk assessment tools specific to MINOCA patients.

12.
EMBO Rep ; 24(10): e58118, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37768688

ABSTRACT

A new wave of studies is untangling the connection between primary genetic mitochondrial diseases and the role of mitochondria in aging: what are the implications for longevity?

13.
Sci Data ; 10(1): 637, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37730697

ABSTRACT

Tau (MAPT) is a microtubule-associated protein causing common neurodegenerative diseases or rare inherited frontotemporal lobar degenerations. Emerging evidence for non-canonical functions of Tau in DNA repair and P53 regulation suggests its involvement in cancer. To bring new evidence for a relevant role of Tau in cancer, we carried out an in-silico pan-cancer analysis of MAPT transcriptomic profile in over 10000 clinical samples from 32 cancer types and over 1300 pre-clinical samples from 28 cancer types provided by the TCGA and the DEPMAP datasets respectively. MAPT expression associated with key cancer hallmarks including inflammation, proliferation, and epithelial to mesenchymal transition, showing cancer-specific patterns. In some cancer types, MAPT functional networks were affected by P53 mutational status. We identified new associations of MAPT with clinical outcomes and drug response in a context-specific manner. Overall, our findings indicate that the MAPT gene is a potential major player in multiple types of cancer. Importantly, the impact of Tau on cancer seems to be heavily influenced by the specific cellular environment.


Subject(s)
Epithelial-Mesenchymal Transition , Neoplasms , Humans , Tumor Suppressor Protein p53 , Neoplasms/genetics , DNA Repair , Inflammation , tau Proteins/genetics
14.
Eur J Intern Med ; 117: 57-65, 2023 11.
Article in English | MEDLINE | ID: mdl-37596114

ABSTRACT

BACKGROUND: Killip classification is a practical clinical tool for risk stratification in patients with acute myocardial infarction (AMI). However, its prognostic role in myocardial infarction with non-obstructive coronary artery (MINOCA) is still poorly explored. Our purpose was to evaluate the prognostic role of high Killip class in the specific setting of MINOCA and compare the results with a cohort of patients with obstructive coronary arteries myocardial infarction (MIOCA). METHODS: This study included 2455 AMI patients of whom 255 were MINOCA. We compared the Killip classes of MINOCA with those of MIOCA and evaluated the prognostic impact of a high Killip class, defined if greater than I, on both populations' outcome. Short-term outcomes included in-hospital death, re-AMI and arrhythmias. Long-term outcomes were all-cause mortality, re-AMI, stroke, heart failure (HF) hospitalization and the composite endpoint of MACE. RESULTS: Killip class >1 occurred in 25 (9.8%) MINOCA patients compared to 327 (14.9%) MIOCA cases. In MINOCA subjects, a high Killip class was associated with a greater in-hospital mortality (p = 0.002) and, at long term follow-up, with a three-fold increased mortality (p = 0.001) and a four-fold risk of HF hospitalization (p = 0.003). Among MINOCA, a high Killip class was identified as a strong independent predictor of MACE occurrence [HR 2.66, 95% CI (1.25-5.64), p = 0.01] together with older age and worse kidney function while in MIOCA population also left ventricular ejection fraction and troponin value predicted MACE. CONCLUSIONS: Killip classification confirmed its prognostic impact on short- and long-term outcomes also in a selected MINOCA population, which still craves for a baseline risk stratification.


Subject(s)
Heart Failure , Myocardial Infarction , Humans , MINOCA , Hospital Mortality , Stroke Volume , Ventricular Function, Left , Prognosis , Heart Failure/complications , Risk Factors , Coronary Angiography
15.
Br J Haematol ; 203(2): 244-254, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37584198

ABSTRACT

The transcriptional factor ETS1 is upregulated in 25% of diffuse large B cell lymphoma (DLBCL). Here, we studied the role of ETS1 phosphorylation at threonine 38, a marker for ETS1 activation, in DLBCL cellular models and clinical specimens. p-ETS1 was detected in activated B cell-like DLBCL (ABC), not in germinal centre B-cell-like DLBCL (GCB) cell lines and, accordingly, it was more common in ABC than GCB DLBCL diagnostic biopsies. MEK inhibition decreased both baseline and IgM stimulation-induced p-ETS1 levels. Genetic inhibition of phosphorylation of ETS1 at threonine 38 affected the growth and the BCR-mediated transcriptome program in DLBCL cell lines. Our data demonstrate that ETS1 phosphorylation at threonine 38 is important for the growth of DLBCL cells and its pharmacological inhibition could benefit lymphoma patients.

17.
Nat Cancer ; 4(8): 1102-1121, 2023 08.
Article in English | MEDLINE | ID: mdl-37460872

ABSTRACT

Cancer is highly infiltrated by myeloid-derived suppressor cells (MDSCs). Currently available immunotherapies do not completely eradicate MDSCs. Through a genome-wide analysis of the translatome of prostate cancers driven by different genetic alterations, we demonstrate that prostate cancer rewires its secretome at the translational level to recruit MDSCs. Among different secreted proteins released by prostate tumor cells, we identified Hgf, Spp1 and Bgn as the key factors that regulate MDSC migration. Mechanistically, we found that the coordinated loss of Pdcd4 and activation of the MNK/eIF4E pathways regulate the mRNAs translation of Hgf, Spp1 and Bgn. MDSC infiltration and tumor growth were dampened in prostate cancer treated with the MNK1/2 inhibitor eFT508 and/or the AKT inhibitor ipatasertib, either alone or in combination with a clinically available MDSC-targeting immunotherapy. This work provides a therapeutic strategy that combines translation inhibition with available immunotherapies to restore immune surveillance in prostate cancer.


Subject(s)
Prostatic Neoplasms , Protein Serine-Threonine Kinases , Male , Humans , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphorylation , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , TOR Serine-Threonine Kinases/metabolism , Prostatic Neoplasms/genetics , Myeloid Cells/metabolism , Hepatocyte Growth Factor/metabolism , Osteopontin/metabolism , Biglycan/metabolism
18.
Kidney Int ; 104(4): 803-819, 2023 10.
Article in English | MEDLINE | ID: mdl-37419447

ABSTRACT

Fabry disease is a rare disorder caused by variations in the alpha-galactosidase gene. To a degree, Fabry disease is manageable via enzyme replacement therapy (ERT). By understanding the molecular basis of Fabry nephropathy (FN) and ERT's long-term impact, here we aimed to provide a framework for selection of potential disease biomarkers and drug targets. We obtained biopsies from eight control individuals and two independent FN cohorts comprising 16 individuals taken prior to and after up to ten years of ERT, and performed RNAseq analysis. Combining pathway-centered analyses with network-science allowed computation of transcriptional landscapes from four nephron compartments and their integration with existing proteome and drug-target interactome data. Comparing these transcriptional landscapes revealed high inter-cohort heterogeneity. Kidney compartment transcriptional landscapes comprehensively reflected differences in FN cohort characteristics. With exception of a few aspects, in particular arteries, early ERT in patients with classical Fabry could lastingly revert FN gene expression patterns to closely match that of control individuals. Pathways nonetheless consistently altered in both FN cohorts pre-ERT were mostly in glomeruli and arteries and related to the same biological themes. While keratinization-related processes in glomeruli were sensitive to ERT, a majority of alterations, such as transporter activity and responses to stimuli, remained dysregulated or reemerged despite ERT. Inferring an ERT-resistant genetic module of expressed genes identified 69 drugs for potential repurposing matching the proteins encoded by 12 genes. Thus, we identified and cross-validated ERT-resistant gene product modules that, when leveraged with external data, allowed estimating their suitability as biomarkers to potentially track disease course or treatment efficacy and potential targets for adjunct pharmaceutical treatment.


Subject(s)
Fabry Disease , Kidney Diseases , Humans , alpha-Galactosidase/genetics , alpha-Galactosidase/metabolism , Biomarkers , Drug Repositioning , Enzyme Replacement Therapy , Fabry Disease/drug therapy , Fabry Disease/genetics , Kidney/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/genetics , Systems Analysis , Transcriptome
19.
Eur Heart J Acute Cardiovasc Care ; 12(9): 604-614, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37261384

ABSTRACT

AIMS: The aim of the study is to evaluate the impact of sex on acute myocardial infarction (AMI) patients' clinical presentation and outcomes, comparing those with non-obstructive and obstructive coronary arteries (MINOCA vs. MIOCA). METHODS AND RESULTS: We enrolled 2455 patients with AMI undergoing coronary angiography from January 2017 to September 2021. Patients were divided according to the type of AMI and sex: male (n = 1593) and female (n = 607) in MIOCA and male (n = 87) and female (n = 168) in MINOCA. Each cohort was further stratified based on age (≤/> 70 years). The primary endpoint (MAE) was a composite of all-cause death, recurrent AMI, and hospitalization for heart failure (HF) at follow-up. Secondary outcomes included all-cause and cardiovascular death, recurrent AMI, HF re-hospitalization, and stroke. MINOCA patients were more likely to be females compared with MIOCA ones (P < 0.001). The median follow-up was 28 (15-41) months. The unadjusted incidence of MAE was significantly higher in females compared with males, both in MINOCA [45 (26.8%) vs. 12 (13.8%); P = 0.018] and MIOCA cohorts [203 (33.4%) vs. 428 (26.9%); P = 0.002]. Age was an independent predictor of MAE in both cohorts. Among MINOCA patients, females ≤70 years old had a higher incidence of MAE [18 (23.7%) vs. 4 (5.9%); P = 0.003] compared with male peers, mainly driven by a higher rate of re-hospitalization for HF (P = 0.045) and recurrence of AMI (P = 0.006). Only in this sub-group of MINOCA patients, female sex was an independent predictor of MAE (hazard ratio = 3.09; 95% confidence interval: 1.02-9.59; P = 0.040). MINOCA females ≤70 years old had worse outcomes than MIOCA female peers. CONCLUSION: MINOCA females ≤70 years old had a significantly higher incidence of MAE, compared with males and MIOCA female peers, likely due to the different pathophysiology of the ischaemic event. TRIAL REGISTRATION: Data were part of the ongoing observational study 'AMIPE: Acute Myocardial Infarction, Prognostic and Therapeutic Evaluation' (ClinicalTrials.gov Identifier: NCT03883711).


Subject(s)
Coronary Artery Disease , Myocardial Infarction , Humans , Male , Female , Aged , MINOCA , Risk Factors , Myocardial Infarction/therapy , Coronary Angiography , Prognosis , Coronary Vessels , Coronary Artery Disease/complications
20.
F1000Res ; 12: 317, 2023.
Article in English | MEDLINE | ID: mdl-37265684

ABSTRACT

Background: The Brazilian Atlantic Forest is one of the most biodiverse terrestrial ecoregions of the world. Among its constituents, restinga vegetation makes a particular case, acting as a buffer zone between the oceans and the forest. Covering some 80% of Brazilian coastline (over 7,300 km in length), restinga is a harsh environment where plants and fungi interact in complex ways that just now are beginning to be unveiled. Ectomycorrhizal symbiosis, in particular, plays a so far ungauged and likely underestimated role. We recently described the morpho-anatomical and molecular features of the ectomycorrhizae formed by several basidiomycetous mycobionts on the host plant Guapira opposita, but the mycorrhizal biology of restinga is still largely unexplored. Here, we report new data on the ectomycorrhizal fungal symbionts of G. opposita, based on the collection of sporomata and ectomycorrhizal root tips in restinga stands occurring in southern Brazil. Methods: To obtain a broader view of restinga mycorrhizal and ecological potential, we compiled a comprehensive and up-to-date checklist of fungal species reported or supposed to establish ectomycorrhizae on restinga-inhabiting host plants, mainly on the basis of field observations. Results: Our list comprises some 726 records, 74 of which correspond to putative ectomycorrhizal taxa specifically associated with restinga. These include several members of Boletaceae, Amanita, Tomentella/ Thelephora, Russula/ Lactifluus, and Clavulina, as well as hypogeous fungi, like the recently described Longistriata flava. Conclusions: Our survey reveals a significant diversity of the restinga ectomycorrhizal mycobiota, indicating the importance of this symbiosis for the ecological functioning of a unique yet poorly known and threatened ecosystem.


Subject(s)
Mycorrhizae , Ecosystem , Symbiosis , Forests , Biodiversity , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...