Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Vaccines (Basel) ; 11(7)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37515028

ABSTRACT

Onchocerciasis remains a debilitating neglected tropical disease. Due to the many challenges of current control methods, an effective vaccine against the causative agent Onchocerca volvulus is urgently needed. Mice and cynomolgus macaque non-human primates (NHPs) were immunized with a vaccine consisting of a fusion of two O. volvulus protein antigens, Ov-103 and Ov-RAL-2 (Ov-FUS-1), and three different adjuvants: Advax-CpG, alum, and AlT4. All vaccine formulations induced high antigen-specific IgG titers in both mice and NHPs. Challenging mice with O. volvulus L3 contained within subcutaneous diffusion chambers demonstrated that Ov-FUS-1/Advax-CpG-immunized animals developed protective immunity, durable for at least 11 weeks. Passive transfer of sera, collected at several time points, from both mice and NHPs immunized with Ov-FUS-1/Advax-CpG transferred protection to naïve mice. These results demonstrate that Ov-FUS-1 with the adjuvant Advax-CpG induces durable protective immunity against O. volvulus in mice and NHPs that is mediated by vaccine-induced humoral factors.

2.
Sci Transl Med ; 14(657): eabl9605, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35947674

ABSTRACT

To prepare for future coronavirus (CoV) pandemics, it is desirable to generate vaccines capable of eliciting broadly neutralizing antibody responses to CoVs. Here, we show that immunization of macaques with SARS-CoV-2 spike (S) protein with a two-shot protocol generated potent serum receptor binding domain cross-neutralizing antibody responses to both SARS-CoV-2 and SARS-CoV-1. Furthermore, responses were equally effective against most SARS-CoV-2 variants of concern (VOCs) and some were highly effective against Omicron. This result contrasts with human infection or many two-shot vaccination protocols where responses were typically more SARS-CoV-2 specific and where VOCs were less well neutralized. Structural studies showed that cloned macaque neutralizing antibodies, particularly using a given heavy chain germline gene, recognized a relatively conserved region proximal to the angiotensin converting enzyme 2 receptor binding site (RBS), whereas many frequently elicited human neutralizing antibodies targeted more variable epitopes overlapping the RBS. B cell repertoire differences between humans and macaques appeared to influence the vaccine response. The macaque neutralizing antibodies identified a pan-SARS-related virus epitope region less well targeted by human antibodies that could be exploited in rational vaccine design.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , Epitopes , Humans , Macaca mulatta , Spike Glycoprotein, Coronavirus
3.
Nature ; 601(7894): 612-616, 2022 01.
Article in English | MEDLINE | ID: mdl-34875675

ABSTRACT

Because no currently available vaccine can prevent HIV infection, pre-exposure prophylaxis (PrEP) with antiretrovirals (ARVs) is an important tool for combating the HIV pandemic1,2. Long-acting ARVs promise to build on the success of current PrEP strategies, which must be taken daily, by reducing the frequency of administration3. GS-CA1 is a small-molecule HIV capsid inhibitor with picomolar antiviral potency against a broad array of HIV strains, including variants resistant to existing ARVs, and has shown long-acting therapeutic potential in a mouse model of HIV infection4. Here we show that a single subcutaneous administration of GS-CA1 provides long-term protection against repeated rectal simian-human immunodeficiency virus (SHIV) challenges in rhesus macaques. Whereas all control animals became infected after 15 weekly challenges, a single 300 mg kg-1 dose of GS-CA1 provided per-exposure infection risk reduction of 97% for 24 weeks. Pharmacokinetic analysis showed a correlation between GS-CA1 plasma concentration and protection from SHIV challenges. GS-CA1 levels greater than twice the rhesus plasma protein-adjusted 95% effective concentration conferred 100% protection in this model. These proof-of-concept data support the development of capsid inhibitors as a novel long-acting PrEP strategy in humans.


Subject(s)
Anti-Retroviral Agents , Capsid Proteins , Capsid , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Anti-Retroviral Agents/pharmacology , Capsid/drug effects , Capsid Proteins/antagonists & inhibitors , Capsid Proteins/metabolism , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/drug effects
4.
J Infect Dis ; 224(6): 995-1004, 2021 09 17.
Article in English | MEDLINE | ID: mdl-33421072

ABSTRACT

BACKGROUND: The objective of this study is to evaluate the immunogenicity of adjuvanted monovalent rabies virus (RABV)-based vaccine candidates against Ebola virus (FILORAB1), Sudan virus (FILORAB2), Marburg virus (FILORAB3), Lassa virus (LASSARAB1), and combined trivalent vaccine candidate (FILORAB1-3) and tetravalent vaccine candidate (FILORAB1-3 and LASSARAB) in nonhuman primates. METHODS: Twenty-four Macaca fascicularis were randomly assigned into 6 groups of 4 animals. Each group was vaccinated with either a single adjuvanted vaccine, the trivalent vaccine, or the tetravalent vaccine at days 0 and 28. We followed the humoral immune responses for 1 year by antigen-specific enzyme-linked immunosorbent assays and RABV neutralization assays. RESULTS: High titers of filovirus and/or Lassa virus glycoprotein-specific immunoglobulin G were induced in the vaccinated animals. There were no significant differences between immune responses in animals vaccinated with single vaccines vs trivalent or tetravalent vaccines. In addition, all vaccine groups elicited strong rabies neutralizing antibody titers. The antigen-specific immune responses were detectable for 1 year in all groups. CONCLUSIONS: In summary, this study shows the longevity of the immune responses up to 365 days for a pentavalent vaccine-against Ebola virus, Sudan virus, Marburg virus, Lassa virus, and RABV-using a safe and effective vaccine platform.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Lassa Fever , Lassa virus , Rabies Vaccines , Rabies , Animals , Antibodies, Viral/blood , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/prevention & control , Lassa Fever/prevention & control , Lassa virus/immunology , Macaca fascicularis , Marburgvirus/immunology , Rabies/prevention & control , Rabies Vaccines/administration & dosage , Vaccines, Combined
5.
J Agric Food Chem ; 68(46): 13093-13101, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-31869223

ABSTRACT

Leaf extracts of Stevia rebaudiana, composed of more than 10 steviol glycosides (SGs), are used as non-nutritive, table sugar (sucrose) alternatives due to their high level of sweetness and low caloric impact. They are often combined with the sugar alcohol erythritol to increase volume and reduce aftertaste. Little is known of the impact of sugar alternatives on the human gut microbiota in terms of the diversity, composition, and metabolic products. Testing of SGs and erythritol using six representatives of the gut microbiota in vitro found no impact on bacterial growth, yet treatment with erythritol resulted in an enhancement of butyric and pentanoic acid production when tested using a human gut microbial community. Furthermore, administration of SGs and erythritol to a Cebus apella model resulted in changes to the gut microbial structure and diversity. Overall, the study did not find a negative impact of SGs and erythritol on the gut microbial community.


Subject(s)
Diterpenes, Kaurane/pharmacology , Erythritol/pharmacology , Gastrointestinal Microbiome/drug effects , Glucosides/pharmacology , Plant Extracts/pharmacology , Sapajus apella/microbiology , Animals , Bacteria/drug effects , Bacteria/genetics , Bacteria/growth & development , Bacteria/metabolism , Butyric Acid/metabolism , Humans , Pentanoic Acids/metabolism , Stevia/chemistry
6.
Am J Primatol ; 81(10-11): e23023, 2019 10.
Article in English | MEDLINE | ID: mdl-31240754

ABSTRACT

Cebus Apella (C. apella) is a species of Nonhuman Primate (NHP) used for biomedical research because it is phylogenetically similar and shares anatomical commonalities with humans. Here, the gut microbiota of three C. apella were examined in the different regions of the intestinal tract. Using metagenomics, the gut microbiota associated with the luminal content and mucus layer for each intestinal region was identified, and functionality was investigated by quantifying the levels of short chain fatty acids (SCFAs) produced. The results of this study show a high degree of similarity in the intestinal communities among C. apella subjects, with multiple shared characteristics. First, the communities in the lumen were more phylogenetically diverse and rich compared to the mucus layer communities throughout the entire intestinal tract. The small intestine communities in the lumen displayed a higher Shannon diversity index compared to the colon communities. Second, all the communities were dominated by aero-tolerant taxa such as Streptococcus, Enterococcus, Abiotrophia, and Lactobacillus, although there was preferential colonization of specific taxa observed. Finally, the primary SCFA produced throughout the intestinal tract was acetic acid, with some propionic acid and butyric acid detected in the colon regions. The small intestine microbiota produced significantly less SCFAs compared to the communities in the colon. Collectively, these data provide an in-depth report on the composition, distribution, and SCFA production of the gut microbiota along the intestinal tract of the C. apella NHP animal model.


Subject(s)
Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome/genetics , Metagenome , Sapajus apella/microbiology , Animals , Bacteria/classification , Bacteria/metabolism , Gastrointestinal Microbiome/physiology , Intestines/microbiology , Male , Phylogeny
7.
Cell ; 173(5): 1111-1122.e10, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29606355

ABSTRACT

The development of interventions to prevent congenital Zika syndrome (CZS) has been limited by the lack of an established nonhuman primate model. Here we show that infection of female rhesus monkeys early in pregnancy with Zika virus (ZIKV) recapitulates many features of CZS in humans. We infected 9 pregnant monkeys with ZIKV, 6 early in pregnancy (weeks 6-7 of gestation) and 3 later in pregnancy (weeks 12-14 of gestation), and compared findings with uninfected controls. 100% (6 of 6) of monkeys infected early in pregnancy exhibited prolonged maternal viremia and fetal neuropathology, including fetal loss, smaller brain size, and histopathologic brain lesions, including microcalcifications, hemorrhage, necrosis, vasculitis, gliosis, and apoptosis of neuroprogenitor cells. High-resolution MRI demonstrated concordant lesions indicative of deep gray matter injury. We also observed spinal, ocular, and neuromuscular pathology. Our data show that vascular compromise and neuroprogenitor cell dysfunction are hallmarks of CZS pathogenesis, suggesting novel strategies to prevent and to treat this disease.


Subject(s)
Fetus/virology , Neurons/pathology , Zika Virus Infection/pathology , Zika Virus/pathogenicity , Animals , Animals, Newborn , Apoptosis , Brain/diagnostic imaging , Brain/pathology , Calcinosis/pathology , Calcinosis/veterinary , Female , Gestational Age , Macaca mulatta , Magnetic Resonance Imaging , Necrosis , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neural Stem Cells/virology , Neurons/virology , Pregnancy , Severity of Illness Index , Vasculitis/pathology , Vasculitis/veterinary , Zika Virus Infection/veterinary , Zika Virus Infection/virology
8.
Comp Med ; 67(1): 79-86, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28222842

ABSTRACT

As a growing threat to human and animal health, antimicrobial resistance (AMR) has become a central public-health topic. Largescale surveillance systems, such as the National Antimicrobial Resistance Monitoring System (NARMS), are now established to monitor and provide guidance regarding AMR, but comprehensive literature on AMR among NHP is sparse. This study provides data regarding current antimicrobial use strategies and the prevalence of AMR in zoonotic bacteria recovered from NHP within biomedical research institutions. We focused on 4 enteric bacteria: Shigella flexneri, Yersinia enterocolitica, Y. pseudotuberculosis, and Campylobacter jejuni. Fifteen veterinarians, 7 biomedical research institutions, and 4 diagnostic laboratories participated, providing susceptibility test results from January 2012 through April 2015. Veterinarians primarily treated cases caused by S. flexneri, Y. enterocolitica, and Y. pseudotuberculosis with enrofloxacin but treated C. jejuni cases with azithromycin and tylosin. All isolates were susceptible to the associated primary antimicrobial but often showed resistance to others. Specifically, S. flexneri isolates frequently were resistant to erythromycin (87.5%), doxycycline (73.7%), and tetracycline (38.3%); Y. enterocolitica isolates to ampicillin (100%) and cefazolin (93.6%); and C. jejuni isolates to methicillin (99.5%) and cephalothin (97.5%). None of the 58 Y. pseudotuber-culosis isolates was resistant to any tested antimicrobial. Notably, resistance patterns were not shared between this study's NHP isolates and human isolates presented by NARMS. Our findings indicate that zoonotic bacteria from NHP diagnostic samples are broadly susceptible to the antimicrobials used to treat the clinical infections. These results can help veterinarians ensure effective antimicrobial therapy and protect staff by minimizing occupational risk.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Campylobacter Infections/veterinary , Campylobacter jejuni/drug effects , Drug Resistance, Microbial , Enterobacteriaceae Infections/veterinary , Shigella flexneri/drug effects , Yersinia enterocolitica/drug effects , Yersinia pseudotuberculosis/drug effects , Animals , Campylobacter Infections/drug therapy , Campylobacter Infections/epidemiology , Campylobacter jejuni/isolation & purification , Cross-Sectional Studies , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/epidemiology , Microbial Sensitivity Tests/statistics & numerical data , Microbial Sensitivity Tests/veterinary , Prevalence , Primate Diseases , Primates , Retrospective Studies , Shigella flexneri/isolation & purification , Surveys and Questionnaires , Yersinia enterocolitica/isolation & purification , Yersinia pseudotuberculosis/isolation & purification , Zoonoses/drug therapy , Zoonoses/microbiology
9.
Nature ; 503(7475): 224-8, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24172905

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1)-specific monoclonal antibodies with extraordinary potency and breadth have recently been described. In humanized mice, combinations of monoclonal antibodies have been shown to suppress viraemia, but the therapeutic potential of these monoclonal antibodies has not yet been evaluated in primates with an intact immune system. Here we show that administration of a cocktail of HIV-1-specific monoclonal antibodies, as well as the single glycan-dependent monoclonal antibody PGT121, resulted in a rapid and precipitous decline of plasma viraemia to undetectable levels in rhesus monkeys chronically infected with the pathogenic simian-human immunodeficiency virus SHIV-SF162P3. A single monoclonal antibody infusion afforded up to a 3.1 log decline of plasma viral RNA in 7 days and also reduced proviral DNA in peripheral blood, gastrointestinal mucosa and lymph nodes without the development of viral resistance. Moreover, after monoclonal antibody administration, host Gag-specific T-lymphocyte responses showed improved functionality. Virus rebounded in most animals after a median of 56 days when serum monoclonal antibody titres had declined to undetectable levels, although, notably, a subset of animals maintained long-term virological control in the absence of further monoclonal antibody infusions. These data demonstrate a profound therapeutic effect of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys as well as an impact on host immune responses. Our findings strongly encourage the investigation of monoclonal antibody therapy for HIV-1 in humans.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , HIV-1/immunology , Simian Acquired Immunodeficiency Syndrome/therapy , Simian Immunodeficiency Virus/physiology , Animals , DNA, Viral/blood , HIV Antibodies/immunology , Macaca mulatta , T-Lymphocytes/immunology , Viremia/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...