Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters










Publication year range
1.
APL Bioeng ; 8(2): 026109, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38706957

ABSTRACT

During cancer pathogenesis, cell-generated mechanical stresses lead to dramatic alterations in the mechanical and organizational properties of the extracellular matrix (ECM). To date, contraction of the ECM is largely attributed to local mechanical stresses generated during cell invasion, but the impact of "elastocapillary" effects from surface tension on the tumor periphery has not been examined. Here, we embed glioblastoma cell spheroids within collagen gels, as a model of tumors within the ECM. We then modulate the surface tension of the spheroids, such that the spheroid contracts or expands. Surprisingly, in both cases, at the far-field, the ECM is contracted toward the spheroids prior to cellular migration from the spheroid into the ECM. Through computational simulation, we demonstrate that contraction of the ECM arises from a balance of spheroid surface tension, cell-ECM interactions, and time-dependent, poroelastic effects of the gel. This leads to the accumulation of ECM near the periphery of the spheroid and the contraction of the ECM without regard to the expansion or contraction of the spheroid. These results highlight the role of tissue-level surface stresses and fluid flow within the ECM in the regulation of cell-ECM interactions.

2.
Mol Biol Cell ; 34(12): ar122, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37672340

ABSTRACT

The invasive potential of glioblastoma cells is attributed to large changes in pressure and volume, driven by diverse elements, including the cytoskeleton and ion cotransporters.  However, how the cell actuates changes in pressure and volume in confinement, and how these changes contribute to invasive motion is unclear. Here, we inhibited SPAK activity, with known impacts on the cytoskeleton and cotransporter activity and explored its role on the migration of glioblastoma cells in confining microchannels to model invasive spread through brain tissue. First, we found that confinement altered cell shape, inducing a transition in morphology that resembled droplet interactions with a capillary vessel, from "wetting" (more adherent) at low confinement, to "nonwetting" (less adherent) at high confinement. This transition was marked by a change from negative to positive pressure by the cells to the confining walls, and an increase in migration speed. Second, we found that the SPAK pathway impacted the migration speed in different ways dependent upon the extent of wetting. For nonwetting cells, SPAK inhibition increased cell-surface tension and cotransporter activity. By contrast, for wetting cells, it also reduced myosin II and YAP phosphorylation. In both cases, membrane-to-cortex attachment is dramatically reduced. Thus, our results suggest that SPAK inhibition differentially coordinates cotransporter and cytoskeleton-induced forces, to impact glioblastoma migration depending on the extent of confinement.


Subject(s)
Glioblastoma , Humans , Glioblastoma/metabolism , Confined Spaces , Cytoskeleton/metabolism , Phosphorylation , Microtubules/metabolism
3.
Mol Syst Biol ; 19(8): e10591, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37477096

ABSTRACT

Over the past two decades, synthetic biological systems have revolutionized the study of cellular physiology. The ability to site-specifically incorporate biologically relevant non-standard amino acids using orthogonal translation systems (OTSs) has proven particularly useful, providing unparalleled access to cellular mechanisms modulated by post-translational modifications, such as protein phosphorylation. However, despite significant advances in OTS design and function, the systems-level biology of OTS development and utilization remains underexplored. In this study, we employ a phosphoserine OTS (pSerOTS) as a model to systematically investigate global interactions between OTS components and the cellular environment, aiming to improve OTS performance. Based on this analysis, we design OTS variants to enhance orthogonality by minimizing host process interactions and reducing stress response activation. Our findings advance understanding of system-wide OTS:host interactions, enabling informed design practices that circumvent deleterious interactions with host physiology while improving OTS performance and stability. Furthermore, our study emphasizes the importance of establishing a pipeline for systematically profiling OTS:host interactions to enhance orthogonality and mitigate mechanisms underlying OTS-mediated host toxicity.


Subject(s)
Amino Acids , Protein Processing, Post-Translational , Amino Acids/metabolism , Phosphorylation , Amines
4.
Sci Adv ; 9(17): eade8934, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37115918

ABSTRACT

Fitness landscapes are models of the sequence space of a genetic element that map how each sequence corresponds to its activity and can be used to guide laboratory evolution. The ribosome is a macromolecular machine that is essential for protein synthesis in all organisms. Because of the prevalence of dominant lethal mutations, a comprehensive fitness landscape of the ribosomal peptidyl transfer center (PTC) has not yet been attained. Here, we develop a method to functionally map an orthogonal tethered ribosome (oRiboT), which permits complete mutagenesis of nucleotides located in the PTC and the resulting epistatic interactions. We found that most nucleotides studied showed flexibility to mutation, and identified epistatic interactions between them, which compensate for deleterious mutations. This work provides a basis for a deeper understanding of ribosome function and malleability and could be used to inform design of engineered ribosomes with applications to synthesize next-generation biomaterials and therapeutics.


Subject(s)
Protein Biosynthesis , Ribosomes , Ribosomes/genetics , Ribosomes/metabolism , Mutation , Nucleotides/metabolism
5.
Nat Commun ; 13(1): 7226, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36433969

ABSTRACT

Protein phosphorylation is a ubiquitous post-translational modification used to regulate cellular processes and proteome architecture by modulating protein-protein interactions. The identification of phosphorylation events through proteomic surveillance has dramatically outpaced our capacity for functional assignment using traditional strategies, which often require knowledge of the upstream kinase a priori. The development of phospho-amino-acid-specific orthogonal translation systems, evolutionarily divergent aminoacyl-tRNA synthetase and tRNA pairs that enable co-translational insertion of a phospho-amino acids, has rapidly improved our ability to assess the physiological function of phosphorylation by providing kinase-independent methods of phosphoprotein production. Despite this utility, broad deployment has been hindered by technical limitations and an inability to reconstruct complex phopho-regulatory networks. Here, we address these challenges by optimizing genetically encoded phosphothreonine translation to characterize phospho-dependent kinase activation mechanisms and, subsequently, develop a multi-level protein interaction platform to directly assess the overlap of kinase and phospho-binding protein substrate networks with phosphosite-level resolution.


Subject(s)
Amino Acyl-tRNA Synthetases , Proteome , Humans , Phosphothreonine , Proteome/genetics , Proteomics , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , RNA, Transfer/metabolism
6.
bioRxiv ; 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36203552

ABSTRACT

Interactions between proteins from intracellular pathogens and host proteins in an infected cell are often mediated by post-translational modifications encoded in the host proteome. Identifying protein modifications, such as phosphorylation, that dictate these interactions remains a defining challenge in unraveling the molecular mechanisms of pathogenesis. We have developed a platform in engineered bacteria that displays over 110,000 phosphorylated human proteins coupled to a fluorescent reporter system capable of identifying the host-pathogen interactome of phosphoproteins (H-PIP). This resource broadly enables cell-type independent interrogation and discovery of proteins from intracellular pathogens capable of binding phosphorylated human proteins. As an example of the H-PIP platform, we generated a unique, high-resolution SARS-CoV-2 interaction network which expanded our knowledge of viral protein function and identified understudied areas of host pathology.

7.
Nat Methods ; 19(11): 1371-1375, 2022 11.
Article in English | MEDLINE | ID: mdl-36280721

ABSTRACT

Mass-spectrometry-based phosphoproteomics has become indispensable for understanding cellular signaling in complex biological systems. Despite the central role of protein phosphorylation, the field still lacks inexpensive, regenerable, and diverse phosphopeptides with ground-truth phosphorylation positions. Here, we present Iterative Synthetically Phosphorylated Isomers (iSPI), a proteome-scale library of human-derived phosphoserine-containing phosphopeptides that is inexpensive, regenerable, and diverse, with precisely known positions of phosphorylation. We demonstrate possible uses of iSPI, including use as a phosphopeptide standard, a tool to evaluate and optimize phosphorylation-site localization algorithms, and a benchmark to compare performance across data analysis pipelines. We also present AScorePro, an updated version of the AScore algorithm specifically optimized for phosphorylation-site localization in higher energy fragmentation spectra, and the FLR viewer, a web tool for phosphorylation-site localization, to enable community use of the iSPI resource. iSPI and its associated data constitute a useful, multi-purpose resource for the phosphoproteomics community.


Subject(s)
Phosphopeptides , Proteome , Humans , Proteome/metabolism , Phosphopeptides/metabolism , Phosphoserine/metabolism , Proteomics , Mass Spectrometry , Phosphorylation
8.
Cancer Res ; 82(9): 1698-1711, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35247885

ABSTRACT

Metabolic reprogramming is a hallmark of malignant transformation, and loss of isozyme diversity (LID) contributes to this process. Isozymes are distinct proteins that catalyze the same enzymatic reaction but can have different kinetic characteristics, subcellular localization, and tissue specificity. Cancer-dominant isozymes that catalyze rate-limiting reactions in critical metabolic processes represent potential therapeutic targets. Here, we examined the isozyme expression patterns of 1,319 enzymatic reactions in 14 cancer types and their matching normal tissues using The Cancer Genome Atlas mRNA expression data to identify isozymes that become cancer-dominant. Of the reactions analyzed, 357 demonstrated LID in at least one cancer type. Assessment of the expression patterns in over 600 cell lines in the Cancer Cell Line Encyclopedia showed that these reactions reflect cellular changes instead of differences in tissue composition; 50% of the LID-affected isozymes showed cancer-dominant expression in the corresponding cell lines. The functional importance of the cancer-dominant isozymes was assessed in genome-wide CRISPR and RNAi loss-of-function screens: 17% were critical for cell proliferation, indicating their potential as therapeutic targets. Lists of prioritized novel metabolic targets were developed for 14 cancer types; the most broadly shared and functionally validated target was acetyl-CoA carboxylase 1 (ACC1). Small molecule inhibition of ACC reduced breast cancer viability in vitro and suppressed tumor growth in cell line- and patient-derived xenografts in vivo. Evaluation of the effects of drug treatment revealed significant metabolic and transcriptional perturbations. Overall, this systematic analysis of isozyme expression patterns elucidates an important aspect of cancer metabolic plasticity and reveals putative metabolic vulnerabilities. SIGNIFICANCE: This study exploits the loss of metabolic isozyme diversity common in cancer and reveals a rich pool of potential therapeutic targets that will allow the repurposing of existing inhibitors for anticancer therapy. See related commentary by Kehinde and Parker, p. 1695.


Subject(s)
Breast Neoplasms , Isoenzymes , Breast Neoplasms/genetics , Cell Line, Tumor , Female , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics
9.
Cell Chem Biol ; 29(6): 1046-1052.e4, 2022 06 16.
Article in English | MEDLINE | ID: mdl-34965380

ABSTRACT

The site-specific incorporation of nonstandard amino acids (nsAAs) during translation has expanded the chemistry and function of proteins. The nsAA para-azido-phenylalanine (pAzF) encodes a biorthogonal chemical moiety that facilitates "click" reactions to attach diverse chemical groups for protein functionalization. However, the azide moiety is unstable in physiological conditions and is reduced to para-amino-phenylalanine (pAF). Azide reduction decreases the yield of pAzF residues in proteins to 50%-60% per azide and limits protein functionalization by click reactions. Here, we describe the use of a pH-tunable diazotransfer reaction that converts pAF to pAzF at >95% efficiency in proteins. The method selectively restores pAzF at multiple sites per protein without introducing off-target modifications. This work addresses a key limitation in the production of pAzF-containing proteins by restoring azides for multi-site functionalization with diverse chemical moieties, setting the stage for the production of genetically encoded biomaterials with broad applications in biotherapeutics, materials science, and biotechnology.


Subject(s)
Azides , Phenylalanine , Amino Acids , Azides/chemistry , Biocompatible Materials , Click Chemistry/methods , Phenylalanine/chemistry , Proteins/chemistry
10.
Cell Rep ; 36(3): 109416, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34289367

ABSTRACT

Advances in genetic code expansion have enabled the production of proteins containing site-specific, authentic post-translational modifications. Here, we use a recoded bacterial strain with an expanded genetic code to encode phosphoserine into a human kinase protein. We directly encode phosphoserine into WNK1 (with-no-lysine [K] 1) or WNK4 kinases at multiple, distinct sites, which produced activated, phosphorylated WNK that phosphorylated and activated SPAK/OSR kinases, thereby synthetically activating this human kinase network in recoded bacteria. We used this approach to identify biochemical properties of WNK kinases, a motif for SPAK substrates, and small-molecule kinase inhibitors for phosphorylated SPAK. We show that the kinase inhibitors modulate SPAK substrates in cells, alter cell volume, and reduce migration of glioblastoma cells. Our work establishes a protein-engineering platform technology that demonstrates that synthetically active WNK kinase networks can accurately model cellular systems and can be used more broadly to target networks of phosphorylated proteins for research and discovery.


Subject(s)
Escherichia coli/metabolism , Signal Transduction , WNK Lysine-Deficient Protein Kinase 1/metabolism , Amino Acid Sequence , Animals , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , Glioblastoma/pathology , HEK293 Cells , Humans , Male , Mice, Nude , Middle Aged , Phosphorylation/drug effects , Phosphoserine/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Recombinant Proteins/metabolism , Signal Transduction/drug effects , Small Molecule Libraries/pharmacology , Substrate Specificity
11.
mBio ; 12(3): e0113221, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34126764

ABSTRACT

Bacterial antibiotic persistence occurs when bacteria are treated with an antibiotic and the majority of the population rapidly dies off, but a small subpopulation enters into a dormant, persistent state and evades death. Diverse pathways leading to nucleoside triphosphate (NTP) depletion and restricted translation have been implicated in persistence, suggesting alternative redundant routes may exist to initiate persister formation. To investigate the molecular mechanism of one such pathway, functional variants of an essential component of translation (phenylalanyl-tRNA synthetase [PheRS]) were used to study the effects of quality control on antibiotic persistence. Upon amino acid limitation, elevated PheRS quality control led to significant decreases in aminoacylated tRNAPhe accumulation and increased antibiotic persistence. This increase in antibiotic persistence was most pronounced (65-fold higher) when the relA-encoded tRNA-dependent stringent response was inactivated. The increase in persistence with elevated quality control correlated with ∼2-fold increases in the levels of the RNase MazF and the NTPase MazG and a 3-fold reduction in cellular NTP pools. These data reveal a mechanism for persister formation independent of the stringent response where reduced translation capacity, as indicated by reduced levels of aminoacylated tRNA, is accompanied by active reduction of cellular NTP pools which in turn triggers antibiotic persistence. IMPORTANCE Bacterial antibiotic persistence is a transient physiological state wherein cells become dormant and thereby evade being killed by antibiotics. Once the antibiotic is removed, bacterial persisters are able to resuscitate and repopulate. It is thought that antibiotic bacterial persisters may cause reoccurring infections in the clinical setting. The molecular triggers and pathways that cause bacteria to enter into the persister state are not fully understood. Our results suggest that accumulation of deacylated tRNA is a trigger for antibiotic persistence independent of the RelA-dependent stringent response, a pathway thought to be required for persistence in many organisms. Overall, this provides a mechanism where changes in translation quality control in response to physiological cues can directly modulate bacterial persistence.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Escherichia coli Proteins/metabolism , Escherichia coli/drug effects , Escherichia coli/metabolism , RNA, Transfer/metabolism , Transfer RNA Aminoacylation/drug effects , Amino Acids/metabolism , Drug Resistance, Bacterial/genetics , Drug Resistance, Bacterial/physiology , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Microbial Viability , Phenylalanine-tRNA Ligase/genetics , Phenylalanine-tRNA Ligase/metabolism
12.
Cancer Res ; 81(16): 4346-4359, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34185676

ABSTRACT

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with low survival rate and a lack of biomarkers and targeted treatments. Here, we target pyruvate kinase M2 (PKM2), a key metabolic component of oncogenesis. In patients with TNBC, PKM2pS37 was identified as a prominent phosphoprotein corresponding to the aggressive breast cancer phenotype that showed a characteristic nuclear staining pattern and prognostic value. Phosphorylation of PKM2 at S37 was connected with a cyclin-dependent kinase (CDK) pathway in TNBC cells. In parallel, pyruvate kinase activator TEPP-46 bound PKM2pS37 and reduced its nuclear localization. In a TNBC mouse xenograft model, treatment with either TEPP-46 or the potent CDK inhibitor dinaciclib reduced tumor growth and diminished PKM2pS37. Combinations of dinaciclib with TEPP-46 reduced cell invasion, impaired redox balance, and triggered cancer cell death. Collectively, these data support an approach to identify PKM2pS37-positive TNBC and target the PKM2 regulatory axis as a potential treatment. SIGNIFICANCE: PKM2 phosphorylation marks aggressive breast cancer cell phenotypes and targeting PKM2pS37 could be an effective therapeutic approach for treating triple-negative breast cancer.


Subject(s)
Carrier Proteins/metabolism , Membrane Proteins/metabolism , Neoplasms/metabolism , Thyroid Hormones/metabolism , Triple Negative Breast Neoplasms/metabolism , Active Transport, Cell Nucleus , Animals , Biomarkers, Tumor , Cell Line, Tumor , Collagen/chemistry , Cyclic N-Oxides/pharmacology , Drug Combinations , Genome, Human , Humans , Indolizines/pharmacology , Laminin/chemistry , MCF-7 Cells , Mice , Neoplasm Invasiveness , Neoplasm Transplantation , Neoplasms/pathology , Oxidation-Reduction , Phenotype , Phosphorylation , Protein Isoforms , Proteoglycans/chemistry , Proteomics/methods , Pyridazines/pharmacology , Pyridinium Compounds/pharmacology , Pyrroles/pharmacology , Pyruvate Kinase/metabolism , Thyroid Hormone-Binding Proteins
13.
Mol Cell ; 81(3): 502-513.e4, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33400923

ABSTRACT

Stress-induced readthrough transcription results in the synthesis of downstream-of-gene (DoG)-containing transcripts. The mechanisms underlying DoG formation during cellular stress remain unknown. Nascent transcription profiles during DoG induction in human cell lines using TT-TimeLapse sequencing revealed widespread transcriptional repression upon hyperosmotic stress. Yet, DoGs are produced regardless of the transcriptional level of their upstream genes. ChIP sequencing confirmed that stress-induced redistribution of RNA polymerase (Pol) II correlates with the transcriptional output of genes. Stress-induced alterations in the Pol II interactome are observed by mass spectrometry. While certain cleavage and polyadenylation factors remain Pol II associated, Integrator complex subunits dissociate from Pol II under stress leading to a genome-wide loss of Integrator on DNA. Depleting the catalytic subunit of Integrator using siRNAs induces hundreds of readthrough transcripts, whose parental genes partially overlap those of stress-induced DoGs. Our results provide insights into the mechanisms underlying DoG production and how Integrator activity influences DoG transcription.


Subject(s)
Endoribonucleases/metabolism , Osmotic Pressure , RNA Polymerase II/metabolism , RNA/biosynthesis , Salt Stress , Transcription, Genetic , Transcriptional Activation , Down-Regulation , Endoribonucleases/genetics , HEK293 Cells , Humans , RNA/genetics , RNA Polymerase II/genetics , Time Factors
14.
Cell Metab ; 32(5): 751-766.e11, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33147485

ABSTRACT

The mitochondrial GTP (mtGTP)-dependent phosphoenolpyruvate (PEP) cycle couples mitochondrial PEPCK (PCK2) to pyruvate kinase (PK) in the liver and pancreatic islets to regulate glucose homeostasis. Here, small molecule PK activators accelerated the PEP cycle to improve islet function, as well as metabolic homeostasis, in preclinical rodent models of diabetes. In contrast, treatment with a PK activator did not improve insulin secretion in pck2-/- mice. Unlike other clinical secretagogues, PK activation enhanced insulin secretion but also had higher insulin content and markers of differentiation. In addition to improving insulin secretion, acute PK activation short-circuited gluconeogenesis to reduce endogenous glucose production while accelerating red blood cell glucose turnover. Four-week delivery of a PK activator in vivo remodeled PK phosphorylation, reduced liver fat, and improved hepatic and peripheral insulin sensitivity in HFD-fed rats. These data provide a preclinical rationale for PK activation to accelerate the PEP cycle to improve metabolic homeostasis and insulin sensitivity.


Subject(s)
Mitochondria/metabolism , Phosphoenolpyruvate/metabolism , Animals , Homeostasis , Insulin/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pyruvate Kinase/metabolism , Rats , Rats, Sprague-Dawley
15.
Cell Metab ; 32(4): 654-664.e5, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32882164

ABSTRACT

Nonalcoholic fatty liver disease is strongly associated with hepatic insulin resistance (HIR); however, the key lipid species and molecular mechanisms linking these conditions are widely debated. We developed a subcellular fractionation method to quantify diacylglycerol (DAG) stereoisomers and ceramides in the endoplasmic reticulum (ER), mitochondria, plasma membrane (PM), lipid droplets, and cytosol. Acute knockdown (KD) of diacylglycerol acyltransferase-2 in liver induced HIR in rats. This was due to PM sn-1,2-DAG accumulation, which promoted PKCϵ activation and insulin receptor kinase (IRK)-T1160 phosphorylation, resulting in decreased IRK-Y1162 phosphorylation. Liver PM sn-1,2-DAG content and IRK-T1160 phosphorylation were also higher in humans with HIR. In rats, liver-specific PKCϵ KD ameliorated high-fat diet-induced HIR by lowering IRK-T1160 phosphorylation, while liver-specific overexpression of constitutively active PKCϵ-induced HIR by promoting IRK-T1160 phosphorylation. These data identify PM sn-1,2-DAGs as the key pool of lipids that activate PKCϵ and that hepatic PKCϵ is both necessary and sufficient in mediating HIR.


Subject(s)
Cell Membrane/chemistry , Diglycerides/metabolism , Liver/metabolism , Protein Kinase C-epsilon/metabolism , Animals , Cell Membrane/metabolism , Diglycerides/chemistry , Humans , Insulin Resistance , Male , Phosphorylation , Rats , Rats, Sprague-Dawley , Receptor, Insulin/metabolism
16.
Proc Natl Acad Sci U S A ; 117(36): 22167-22172, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32839318

ABSTRACT

Accurate protein synthesis is a tightly controlled biological process with multiple quality control steps safeguarded by aminoacyl-transfer RNA (tRNA) synthetases and the ribosome. Reduced translational accuracy leads to various physiological changes in both prokaryotes and eukaryotes. Termination of translation is signaled by stop codons and catalyzed by release factors. Occasionally, stop codons can be suppressed by near-cognate aminoacyl-tRNAs, resulting in protein variants with extended C termini. We have recently shown that stop-codon readthrough is heterogeneous among single bacterial cells. However, little is known about how environmental factors affect the level and heterogeneity of stop-codon readthrough. In this study, we have combined dual-fluorescence reporters, mass spectrometry, mathematical modeling, and single-cell approaches to demonstrate that a metabolic stress caused by excess carbon substantially increases both the level and heterogeneity of stop-codon readthrough. Excess carbon leads to accumulation of acid metabolites, which lower the pH and the activity of release factors to promote readthrough. Furthermore, our time-lapse microscopy experiments show that single cells with high readthrough levels are more adapted to severe acid stress conditions and are more sensitive to an aminoglycoside antibiotic. Our work thus reveals a metabolic stress that promotes translational heterogeneity and phenotypic diversity.


Subject(s)
Codon, Terminator , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial/physiology , Gene Expression Regulation, Bacterial/drug effects , Glucose/pharmacology , Hydrogen-Ion Concentration , Mutation
17.
Am J Physiol Cell Physiol ; 318(3): C486-C501, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31913699

ABSTRACT

AMP-activated protein kinase (AMPK) activation promotes early stages of epithelial junction assembly. AMPK activation in MDCK renal epithelial cells facilitates localization of the junction-associated proteins aPKCζ and Par3 to the plasma membrane and promotes conversion of Cdc42, a key regulator of epithelial polarization and junction assembly, to its active GTP bound state. Furthermore, Par3 is an important regulator of AMPK-mediated aPKCζ localization. Both aPKCζ and Par3 serve as intermediates in AMPK-mediated junction assembly, with inhibition of aPKCζ activity or Par3 knockdown disrupting AMPK's ability to facilitate zonula occludens (ZO-1) localization. AMPK phosphorylates the adherens junction protein afadin and regulates its interaction with the tight-junction protein zonula occludens-1. Afadin is phosphorylated at two critical sites, S228 (residing within an aPKCζ consensus site) and S1102 (residing within an AMPK consensus site), that are differentially regulated during junction assembly and that exert different effects on the process. Expression of phospho-defective mutants (S228A and S1102A) perturbed ZO-1 localization to the plasma membrane during AMPK-induced junction assembly. Expression of S228A increased the ZO-1/afadin interaction, while S1102A reduced this interaction during extracellular calcium-induced junction assembly. Inhibition of aPKCζ activity also increased the ZO-1/afadin interaction. Taken together, these data suggest that aPKCζ phosphorylation of afadin terminates the ZO-1/afadin interaction and thus permits the later stages of junction assembly.


Subject(s)
AMP-Activated Protein Kinases/physiology , Cell Membrane/enzymology , Tight Junctions/enzymology , Animals , Cell Membrane/chemistry , Dogs , Madin Darby Canine Kidney Cells , Mice , Phosphorylation/physiology , Protein Kinase C/metabolism , Tight Junctions/chemistry , Zonula Occludens-1 Protein/metabolism
18.
J Biol Chem ; 295(5): 1402-1410, 2020 01 31.
Article in English | MEDLINE | ID: mdl-31862734

ABSTRACT

ß-N-methylamino-l-alanine (BMAA) is a nonproteinogenic amino acid that has been associated with neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD). BMAA has been found in human protein extracts; however, the mechanism by which it enters the proteome is still unclear. It has been suggested that BMAA is misincorporated at serine codons during protein synthesis, but direct evidence of its cotranslational incorporation is currently lacking. Here, using LC-MS-purified BMAA and several biochemical assays, we sought to determine whether any aminoacyl-tRNA synthetase (aaRS) utilizes BMAA as a substrate for aminoacylation. Despite BMAA's previously predicted misincorporation at serine codons, following a screen for amino acid activation in ATP/PPi exchange assays, we observed that BMAA is not a substrate for human seryl-tRNA synthetase (SerRS). Instead, we observed that BMAA is a substrate for human alanyl-tRNA synthetase (AlaRS) and can form BMAA-tRNAAla by escaping from the intrinsic AlaRS proofreading activity. Furthermore, we found that BMAA inhibits both the cognate amino acid activation and the editing functions of AlaRS. Our results reveal that, in addition to being misincorporated during translation, BMAA may be able to disrupt the integrity of protein synthesis through multiple different mechanisms.


Subject(s)
Alanine-tRNA Ligase/metabolism , Amino Acids, Diamino/metabolism , Transfer RNA Aminoacylation , Alanine/chemistry , Alanine/metabolism , Amino Acids, Diamino/chemistry , Chromatography, Liquid , Cyanobacteria Toxins , Gene Expression , Humans , Kinetics , Mass Spectrometry , Serine/chemistry , Serine/metabolism , Serine-tRNA Ligase/metabolism
19.
Cell Rep ; 29(11): 3394-3404.e9, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31825824

ABSTRACT

Pyruvate kinase is an important enzyme in glycolysis and a key metabolic control point. We recently observed a pyruvate kinase liver isoform (PKL) phosphorylation site at S113 that correlates with insulin resistance in rats on a 3 day high-fat diet (HFD) and suggests additional control points for PKL activity. However, in contrast to the classical model of PKL regulation, neither authentically phosphorylated PKL at S12 nor S113 alone is sufficient to alter enzyme kinetics or structure. Instead, we show that cyclin-dependent kinases (CDKs) are activated by the HFD and responsible for PKL phosphorylation at position S113 in addition to other targets. These CDKs control PKL nuclear retention, alter cytosolic PKL activity, and ultimately influence glucose production. These results change our view of PKL regulation and highlight a previously unrecognized pathway of hepatic CDK activity and metabolic control points that may be important in insulin resistance and type 2 diabetes.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclin-Dependent Kinases/metabolism , Gluconeogenesis , Hepatocytes/metabolism , Pyruvate Kinase/metabolism , Signal Transduction , Animals , Cell Line, Tumor , Cells, Cultured , Diet, High-Fat , Glucose/metabolism , Insulin Resistance , Male , Phosphorylation , Pyruvate Kinase/chemistry , Rats , Rats, Sprague-Dawley
20.
mBio ; 10(6)2019 12 17.
Article in English | MEDLINE | ID: mdl-31848288

ABSTRACT

Mechanisms have evolved to prevent errors in replication, transcription, and translation of genetic material, with translational errors occurring most frequently. Errors in protein synthesis can occur at two steps, during tRNA aminoacylation and ribosome decoding. Recent advances in protein mass spectrometry have indicated that previous reports of translational errors have potentially underestimated the frequency of these events, but also that the majority of translational errors occur during ribosomal decoding, suggesting that aminoacylation errors are evolutionarily less tolerated. Despite that interpretation, there is evidence that some aminoacylation errors may be regulated, and thus provide a benefit to the cell, while others are clearly detrimental. Here, we show that while it has been suggested that regulated Thr-to-Ser substitutions may be beneficial, there is a threshold beyond which these errors are detrimental. In contrast, we show that errors mediated by alanyl-tRNA synthetase (AlaRS) are not well tolerated and induce a global stress response that leads to gross perturbation of the Escherichia coli proteome, with potentially catastrophic effects on fitness and viability. Tolerance for Ala mistranslation appears to be much lower than with other translational errors, consistent with previous reports of multiple proofreading mechanisms targeting mischarged tRNAAla These results demonstrate the essential role of aminoacyl-tRNA proofreading in optimizing cellular fitness and suggest that any potentially beneficial effects of mistranslation may be confined to specific amino acid substitutions.IMPORTANCE Errors in protein synthesis have historically been assumed to be detrimental to the cell. While there are many reports that translational errors are consequential, there is a growing body of evidence that some mistranslation events may be tolerated or even beneficial. Using two models of mistranslation, we compare the direct phenotypic effects of these events in Escherichia coli This work provides insight into the threshold for tolerance of specific mistranslation events that were previously predicted to be broadly neutral to proteome integrity. Furthermore, these data reveal the effects of mistranslation beyond the general unfolded stress response, leading to global translational reprogramming.


Subject(s)
Amino Acyl-tRNA Synthetases/metabolism , Escherichia coli Infections/microbiology , Escherichia coli/genetics , Escherichia coli/metabolism , Proteome , Proteomics , Cell Membrane/metabolism , Protein Biosynthesis , Proteomics/methods , RNA, Transfer, Ser/chemistry , RNA, Transfer, Ser/genetics , Substrate Specificity , Transfer RNA Aminoacylation
SELECTION OF CITATIONS
SEARCH DETAIL
...