Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Cell ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38876107

ABSTRACT

Vector-borne diseases are a leading cause of death worldwide and pose a substantial unmet medical need. Pathogens binding to host extracellular proteins (the "exoproteome") represents a crucial interface in the etiology of vector-borne disease. Here, we used bacterial selection to elucidate host-microbe interactions in high throughput (BASEHIT)-a technique enabling interrogation of microbial interactions with 3,324 human exoproteins-to profile the interactomes of 82 human-pathogen samples, including 30 strains of arthropod-borne pathogens and 8 strains of related non-vector-borne pathogens. The resulting atlas revealed 1,303 putative interactions, including hundreds of pairings with potential roles in pathogenesis, including cell invasion, tissue colonization, immune evasion, and host sensing. Subsequent functional investigations uncovered that Lyme disease spirochetes recognize epidermal growth factor as an environmental cue of transcriptional regulation and that conserved interactions between intracellular pathogens and thioredoxins facilitate cell invasion. In summary, this interactome atlas provides molecular-level insights into microbial pathogenesis and reveals potential host-directed targets for next-generation therapeutics.

2.
Nature ; 628(8006): 171-179, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509360

ABSTRACT

The myriad microorganisms that live in close association with humans have diverse effects on physiology, yet the molecular bases for these impacts remain mostly unknown1-3. Classical pathogens often invade host tissues and modulate immune responses through interactions with human extracellular and secreted proteins (the 'exoproteome'). Commensal microorganisms may also facilitate niche colonization and shape host biology by engaging host exoproteins; however, direct exoproteome-microbiota interactions remain largely unexplored. Here we developed and validated a novel technology, BASEHIT, that enables proteome-scale assessment of human exoproteome-microbiome interactions. Using BASEHIT, we interrogated more than 1.7 million potential interactions between 519 human-associated bacterial strains from diverse phylogenies and tissues of origin and 3,324 human exoproteins. The resulting interactome revealed an extensive network of transkingdom connectivity consisting of thousands of previously undescribed host-microorganism interactions involving 383 strains and 651 host proteins. Specific binding patterns within this network implied underlying biological logic; for example, conspecific strains exhibited shared exoprotein-binding patterns, and individual tissue isolates uniquely bound tissue-specific exoproteins. Furthermore, we observed dozens of unique and often strain-specific interactions with potential roles in niche colonization, tissue remodelling and immunomodulation, and found that strains with differing host interaction profiles had divergent interactions with host cells in vitro and effects on the host immune system in vivo. Overall, these studies expose a previously unexplored landscape of molecular-level host-microbiota interactions that may underlie causal effects of indigenous microorganisms on human health and disease.


Subject(s)
Bacteria , Host Microbial Interactions , Microbiota , Phylogeny , Proteome , Symbiosis , Animals , Female , Humans , Mice , Bacteria/classification , Bacteria/immunology , Bacteria/metabolism , Bacteria/pathogenicity , Host Microbial Interactions/immunology , Host Microbial Interactions/physiology , Host Tropism , Microbiota/immunology , Microbiota/physiology , Organ Specificity , Protein Binding , Proteome/immunology , Proteome/metabolism , Reproducibility of Results
3.
Science ; 383(6684): 705-707, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38359108
4.
Nature ; 628(8006): 204-211, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38418880

ABSTRACT

The eye, an anatomical extension of the central nervous system (CNS), exhibits many molecular and cellular parallels to the brain. Emerging research demonstrates that changes in the brain are often reflected in the eye, particularly in the retina1. Still, the possibility of an immunological nexus between the posterior eye and the rest of the CNS tissues remains unexplored. Here, studying immune responses to herpes simplex virus in the brain, we observed that intravitreal immunization protects mice against intracranial viral challenge. This protection extended to bacteria and even tumours, allowing therapeutic immune responses against glioblastoma through intravitreal immunization. We further show that the anterior and posterior compartments of the eye have distinct lymphatic drainage systems, with the latter draining to the deep cervical lymph nodes through lymphatic vasculature in the optic nerve sheath. This posterior lymphatic drainage, like that of meningeal lymphatics, could be modulated by the lymphatic stimulator VEGFC. Conversely, we show that inhibition of lymphatic signalling on the optic nerve could overcome a major limitation in gene therapy by diminishing the immune response to adeno-associated virus and ensuring continued efficacy after multiple doses. These results reveal a shared lymphatic circuit able to mount a unified immune response between the posterior eye and the brain, highlighting an understudied immunological feature of the eye and opening up the potential for new therapeutic strategies in ocular and CNS diseases.


Subject(s)
Brain , Eye , Lymphatic System , Animals , Female , Humans , Male , Mice , Rabbits , Bacteria/immunology , Brain/anatomy & histology , Brain/immunology , Dependovirus/immunology , Eye/anatomy & histology , Eye/immunology , Glioblastoma/immunology , Herpesvirus 2, Human/immunology , Intravitreal Injections , Lymphatic System/anatomy & histology , Lymphatic System/immunology , Lymphatic Vessels/anatomy & histology , Lymphatic Vessels/immunology , Macaca mulatta , Meninges/immunology , Optic Nerve/immunology , Swine , Zebrafish , Vascular Endothelial Growth Factor C/immunology , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor C/pharmacology
5.
medRxiv ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38260484

ABSTRACT

Background: Long COVID contributes to the global burden of disease. Proposed root cause hypotheses include the persistence of SARS-CoV-2 viral reservoir, autoimmunity, and reactivation of latent herpesviruses. Patients have reported various changes in Long COVID symptoms after COVID-19 vaccinations, leaving uncertainty about whether vaccine-induced immune responses may alleviate or worsen disease pathology. Methods: In this prospective study, we evaluated changes in symptoms and immune responses after COVID-19 vaccination in 16 vaccine-naïve individuals with Long COVID. Surveys were administered before vaccination and then at 2, 6, and 12 weeks after receiving the first vaccine dose of the primary series. Simultaneously, SARS-CoV-2-reactive TCR enrichment, SARS-CoV-2-specific antibody responses, antibody responses to other viral and self-antigens, and circulating cytokines were quantified before vaccination and at 6 and 12 weeks after vaccination. Results: Self-report at 12 weeks post-vaccination indicated 10 out of 16 participants had improved health, 3 had no change, 1 had worse health, and 2 reported marginal changes. Significant elevation in SARS-CoV-2-specific TCRs and Spike protein-specific IgG were observed 6 and 12 weeks after vaccination. No changes in reactivities were observed against herpes viruses and self-antigens. Within this dataset, higher baseline sIL-6R was associated with symptom improvement, and the two top features associated with non-improvement were high IFN-ß and CNTF, among soluble analytes. Conclusions: Our study showed that in this small sample, vaccination improved the health or resulted in no change to the health of most participants, though few experienced worsening. Vaccination was associated with increased SARS-CoV-2 Spike protein-specific IgG and T cell expansion in most individuals with Long COVID. Symptom improvement was observed in those with baseline elevated sIL-6R, while elevated interferon and neuropeptide levels were associated with a lack of improvement.

6.
Nat Rev Rheumatol ; 20(1): 33-47, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38081945

ABSTRACT

Several new discoveries have revived interest in the pathogenic potential and possible clinical roles of IL-18. IL-18 is an IL-1 family cytokine with potent ability to induce IFNγ production. However, basic investigations and now clinical observations suggest a more complex picture. Unique aspects of IL-18 biology at the levels of transcription, activation, secretion, neutralization, receptor distribution and signalling help to explain its pleiotropic roles in mucosal and systemic inflammation. Blood biomarker studies reveal a cytokine for which profound elevation, associated with detectable 'free IL-18', defines a group of autoinflammatory diseases in which IL-18 dysregulation can be a primary driving feature, the so-called 'IL-18opathies'. This impressive specificity might accelerate diagnoses and identify patients amenable to therapeutic IL-18 blockade. Pathogenically, human and animal studies identify a preferential activation of CD8+ T cells over other IL-18-responsive lymphocytes. IL-18 agonist treatments that leverage the site of production or subversion of endogenous IL-18 inhibition show promise in augmenting immune responses to cancer. Thus, the unique aspects of IL-18 biology are finally beginning to have clinical impact in precision diagnostics, disease monitoring and targeted treatment of inflammatory and malignant diseases.


Subject(s)
Interleukin-18 , Neoplasms , Animals , Humans , CD8-Positive T-Lymphocytes , Cytokines , Inflammation , Immunity
7.
Proc Natl Acad Sci U S A ; 120(44): e2306632120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37871202

ABSTRACT

The ability of immune cells to directly interact with transformed cells is an essential component of immune surveillance and critical for optimal tissue function. The tumor-immune interactome (the collective cellular interactions between oncogenic cells and immune cells) is distinct and varied based on the tissue location and immunogenicity of tumor subtypes. However, comprehensive landscape and the consequences of tumor-interacting immune cells in the tumor microenvironment are not well understood. Current tools are limited in their ability to identify and record interactors in vivo or be utilized for downstream analysis. Here, we describe the development and validation of a technology leveraging synthetic Notch receptors reporting physical tumor cell-immune cell contact in vivo in order to decipher the tumor-immune interactome. We call this approach, Tumor-Immune Interactome Non-biased Discovery Retroviral Reporter or TIINDRR. Using TIINDRR, we identify the tumor-immune interactomes that define immunological refractory and sensitive tumors and how different immunotherapies alter these interactions. Thus, TIINDRR provides a flexible and versatile tool for studying in-vivo tumor-immune cell interactions, aiding in the identification of biologically relevant information needed for the rational design of immune-based therapies.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Cell Communication , Hydrolases , Immunologic Surveillance , Immunotherapy , Tumor Microenvironment
8.
Nature ; 623(7985): 139-148, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37748514

ABSTRACT

Post-acute infection syndromes may develop after acute viral disease1. Infection with SARS-CoV-2 can result in the development of a post-acute infection syndrome known as long COVID. Individuals with long COVID frequently report unremitting fatigue, post-exertional malaise, and a variety of cognitive and autonomic dysfunctions2-4. However, the biological processes that are associated with the development and persistence of these symptoms are unclear. Here 275 individuals with or without long COVID were enrolled in a cross-sectional study that included multidimensional immune phenotyping and unbiased machine learning methods to identify biological features associated with long COVID. Marked differences were noted in circulating myeloid and lymphocyte populations relative to the matched controls, as well as evidence of exaggerated humoral responses directed against SARS-CoV-2 among participants with long COVID. Furthermore, higher antibody responses directed against non-SARS-CoV-2 viral pathogens were observed among individuals with long COVID, particularly Epstein-Barr virus. Levels of soluble immune mediators and hormones varied among groups, with cortisol levels being lower among participants with long COVID. Integration of immune phenotyping data into unbiased machine learning models identified the key features that are most strongly associated with long COVID status. Collectively, these findings may help to guide future studies into the pathobiology of long COVID and help with developing relevant biomarkers.


Subject(s)
Antibodies, Viral , Herpesvirus 4, Human , Hydrocortisone , Lymphocytes , Myeloid Cells , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Humans , Antibodies, Viral/blood , Antibodies, Viral/immunology , Biomarkers/blood , Cross-Sectional Studies , Herpesvirus 4, Human/immunology , Hydrocortisone/blood , Immunophenotyping , Lymphocytes/immunology , Machine Learning , Myeloid Cells/immunology , Post-Acute COVID-19 Syndrome/diagnosis , Post-Acute COVID-19 Syndrome/immunology , Post-Acute COVID-19 Syndrome/physiopathology , Post-Acute COVID-19 Syndrome/virology , SARS-CoV-2/immunology
9.
Cell ; 186(14): 3095-3110.e19, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37321219

ABSTRACT

The human body contains thousands of metabolites derived from mammalian cells, the microbiota, food, and medical drugs. Many bioactive metabolites act through the engagement of G-protein-coupled receptors (GPCRs); however, technological limitations constrain current explorations of metabolite-GPCR interactions. Here, we developed a highly multiplexed screening technology called PRESTO-Salsa that enables simultaneous assessment of nearly all conventional GPCRs (>300 receptors) in a single well of a 96-well plate. Using PRESTO-Salsa, we screened 1,041 human-associated metabolites against the GPCRome and uncovered previously unreported endogenous, exogenous, and microbial GPCR agonists. Next, we leveraged PRESTO-Salsa to generate an atlas of microbiome-GPCR interactions across 435 human microbiome strains from multiple body sites, revealing conserved patterns of cross-tissue GPCR engagement and activation of CD97/ADGRE5 by the Porphyromonas gingivalis protease gingipain K. These studies thus establish a highly multiplexed bioactivity screening technology and expose a diverse landscape of human, diet, drug, and microbiota metabolome-GPCRome interactions.


Subject(s)
Microbiota , Receptors, G-Protein-Coupled , Animals , Humans , Receptors, G-Protein-Coupled/metabolism , Metabolome , Mammals/metabolism
10.
Sci Immunol ; 8(83): eadh3455, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37146127

ABSTRACT

Rare immune-mediated cardiac tissue inflammation can occur after vaccination, including after SARS-CoV-2 mRNA vaccines. However, the underlying immune cellular and molecular mechanisms driving this pathology remain poorly understood. Here, we investigated a cohort of patients who developed myocarditis and/or pericarditis with elevated troponin, B-type natriuretic peptide, and C-reactive protein levels as well as cardiac imaging abnormalities shortly after SARS-CoV-2 mRNA vaccination. Contrary to early hypotheses, patients did not demonstrate features of hypersensitivity myocarditis, nor did they have exaggerated SARS-CoV-2-specific or neutralizing antibody responses consistent with a hyperimmune humoral mechanism. We additionally found no evidence of cardiac-targeted autoantibodies. Instead, unbiased systematic immune serum profiling revealed elevations in circulating interleukins (IL-1ß, IL-1RA, and IL-15), chemokines (CCL4, CXCL1, and CXCL10), and matrix metalloproteases (MMP1, MMP8, MMP9, and TIMP1). Subsequent deep immune profiling using single-cell RNA and repertoire sequencing of peripheral blood mononuclear cells during acute disease revealed expansion of activated CXCR3+ cytotoxic T cells and NK cells, both phenotypically resembling cytokine-driven killer cells. In addition, patients displayed signatures of inflammatory and profibrotic CCR2+ CD163+ monocytes, coupled with elevated serum-soluble CD163, that may be linked to the late gadolinium enhancement on cardiac MRI, which can persist for months after vaccination. Together, our results demonstrate up-regulation in inflammatory cytokines and corresponding lymphocytes with tissue-damaging capabilities, suggesting a cytokine-dependent pathology, which may further be accompanied by myeloid cell-associated cardiac fibrosis. These findings likely rule out some previously proposed mechanisms of mRNA vaccine--associated myopericarditis and point to new ones with relevance to vaccine development and clinical care.


Subject(s)
Antineoplastic Agents , COVID-19 , Myocarditis , Humans , Myocarditis/etiology , SARS-CoV-2 , Leukocytes, Mononuclear , COVID-19 Vaccines/adverse effects , Contrast Media , COVID-19/prevention & control , Gadolinium , Killer Cells, Natural , Cytokines
11.
Nat Commun ; 14(1): 1299, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36894554

ABSTRACT

mRNA-based vaccines dramatically reduce the occurrence and severity of COVID-19, but are associated with rare vaccine-related adverse effects. These toxicities, coupled with observations that SARS-CoV-2 infection is associated with autoantibody development, raise questions whether COVID-19 vaccines may also promote the development of autoantibodies, particularly in autoimmune patients. Here we used Rapid Extracellular Antigen Profiling to characterize self- and viral-directed humoral responses after SARS-CoV-2 mRNA vaccination in 145 healthy individuals, 38 patients with autoimmune diseases, and 8 patients with mRNA vaccine-associated myocarditis. We confirm that most individuals generated robust virus-specific antibody responses post vaccination, but that the quality of this response is impaired in autoimmune patients on certain modes of immunosuppression. Autoantibody dynamics are remarkably stable in all vaccinated patients compared to COVID-19 patients that exhibit an increased prevalence of new autoantibody reactivities. Patients with vaccine-associated myocarditis do not have increased autoantibody reactivities relative to controls. In summary, our findings indicate that mRNA vaccines decouple SARS-CoV-2 immunity from autoantibody responses observed during acute COVID-19.


Subject(s)
Autoimmune Diseases , COVID-19 Vaccines , COVID-19 , Immunity, Humoral , Vaccines, Synthetic , mRNA Vaccines , Humans , Antibodies, Viral/immunology , Autoantibodies/immunology , Autoimmune Diseases/immunology , Autoimmunity/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Drug-Related Side Effects and Adverse Reactions/immunology , Immunity, Humoral/immunology , Myocarditis/immunology , RNA, Messenger , SARS-CoV-2 , Vaccination , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology , Vaccines, Synthetic/therapeutic use , mRNA Vaccines/adverse effects , mRNA Vaccines/immunology , mRNA Vaccines/therapeutic use
12.
Cell Rep ; 42(3): 112147, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36827187

ABSTRACT

Interleukin-18 (IL-18) promotes natural killer (NK) and T cell production of interferon (IFN)-γ, a key factor in resistance to Toxoplasma gondii, but previous work has shown a limited role for endogenous IL-18 in control of this parasite. Although infection with T. gondii results in release of IL-18, the production of IFN-γ induces high levels of the IL-18 binding protein (IL-18BP). Antagonism of IL-18BP with a "decoy-to-the-decoy" (D2D) IL-18 construct that does not signal but rather binds IL-18BP results in enhanced innate lymphoid cell (ILC) and T cell responses and improved parasite control. In addition, the use of IL-18 resistant to IL-18BP ("decoy-resistant" IL-18 [DR-18]) is more effective than exogenous IL-18 at promoting innate resistance to infection. DR-18 enhances CD4+ T cell production of IFN-γ but results in CD4+ T cell-mediated pathology. Thus, endogenous IL-18BP restrains aberrant immune pathology, and this study highlights strategies that can be used to tune this regulatory pathway for optimal anti-pathogen responses.


Subject(s)
Toxoplasma , Toxoplasmosis, Animal , Humans , Animals , Interleukin-18/metabolism , Killer Cells, Natural , Interleukin-12/metabolism , Immunity, Innate
13.
Sci Immunol ; 7(76): eabo3420, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36240285

ABSTRACT

Some hematological malignancies such as multiple myeloma are inherently resistant to immune-mediated antitumor responses, the cause of which remains unknown. Allogeneic bone marrow transplantation (alloBMT) is the only curative immunotherapy for hematological malignancies due to profound graft-versus-tumor (GVT) effects, but relapse remains the major cause of death. We developed murine models of alloBMT where the hematological malignancy is either sensitive [acute myeloid leukemia (AML)] or resistant (myeloma) to GVT effects. We found that CD8+ T cell exhaustion in bone marrow was primarily alloantigen-driven, with expression of inhibitory ligands present on myeloma but not AML. Because of this tumor-independent exhaustion signature, immune checkpoint inhibition (ICI) in myeloma exacerbated graft-versus-host disease (GVHD) without promoting GVT effects. Administration of post-transplant cyclophosphamide (PT-Cy) depleted donor T cells with an exhausted phenotype and spared T cells displaying a stem-like memory phenotype with chromatin accessibility present in cytokine signaling genes, including the interleukin-18 (IL-18) receptor. Whereas ICI with anti-PD-1 or anti-TIM-3 remained ineffective after PT-Cy, administration of a decoy-resistant IL-18 (DR-18) strongly enhanced GVT effects in both myeloma and leukemia models, without exacerbation of GVHD. We thus defined mechanisms of resistance to T cell-mediated antitumor effects after alloBMT and described an immunotherapy approach targeting stem-like memory T cells to enhance antitumor immunity.


Subject(s)
Graft vs Host Disease , Hematologic Neoplasms , Multiple Myeloma , Animals , Chromatin , Cyclophosphamide , Immune Checkpoint Inhibitors , Interleukin-18 , Isoantigens , Memory T Cells , Mice , Multiple Myeloma/therapy , Transplantation, Homologous
14.
medRxiv ; 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35982667

ABSTRACT

SARS-CoV-2 infection can result in the development of a constellation of persistent sequelae following acute disease called post-acute sequelae of COVID-19 (PASC) or Long COVID 1-3 . Individuals diagnosed with Long COVID frequently report unremitting fatigue, post-exertional malaise, and a variety of cognitive and autonomic dysfunctions 1-3 ; however, the basic biological mechanisms responsible for these debilitating symptoms are unclear. Here, 215 individuals were included in an exploratory, cross-sectional study to perform multi-dimensional immune phenotyping in conjunction with machine learning methods to identify key immunological features distinguishing Long COVID. Marked differences were noted in specific circulating myeloid and lymphocyte populations relative to matched control groups, as well as evidence of elevated humoral responses directed against SARS-CoV-2 among participants with Long COVID. Further, unexpected increases were observed in antibody responses directed against non-SARS-CoV-2 viral pathogens, particularly Epstein-Barr virus. Analysis of circulating immune mediators and various hormones also revealed pronounced differences, with levels of cortisol being uniformly lower among participants with Long COVID relative to matched control groups. Integration of immune phenotyping data into unbiased machine learning models identified significant distinguishing features critical in accurate classification of Long COVID, with decreased levels of cortisol being the most significant individual predictor. These findings will help guide additional studies into the pathobiology of Long COVID and may aid in the future development of objective biomarkers for Long COVID.

15.
mBio ; 13(5): e0116122, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36036625

ABSTRACT

Relapsing fever, caused by diverse Borrelia spirochetes, is prevalent in many parts of the world and causes significant morbidity and mortality. To investigate the pathoetiology of relapsing fever, we performed a high-throughput screen of Borrelia-binding host factors using a library of human extracellular and secretory proteins and identified CD55 as a novel host binding partner of Borrelia crocidurae and Borrelia persica, two agents of relapsing fever in Africa and Eurasia. CD55 is present on the surface of erythrocytes, carries the Cromer blood group antigens, and protects cells from complement-mediated lysis. Using flow cytometry, we confirmed that both human and murine CD55 bound to B. crocidurae and B. persica. Given the expression of CD55 on erythrocytes, we investigated the role of CD55 in pathological B. crocidurae-induced erythrocyte aggregation (rosettes), which enables spirochete immune evasion. We showed that rosette formation was partially dependent on host cell CD55 expression. Pharmacologically, soluble recombinant CD55 inhibited erythrocyte rosette formation. Finally, CD55-deficient mice infected with B. crocidurae had a lower pathogen load and elevated proinflammatory cytokine and complement factor C5a levels. In summary, our results indicate that CD55 is a host factor that is manipulated by the causative agents of relapsing fever for immune evasion. IMPORTANCE Borrelia species are causative agents of Lyme disease and relapsing fever infections in humans. B. crocidurae causes one of the most prevalent relapsing fever infections in parts of West Africa. In the endemic regions, B. crocidurae is present in ~17% of the ticks and ~11% of the rodents that serve as reservoirs. In Senegal, ~7% of patients with acute febrile illness were found to be infected with B. crocidurae. There is little information on host-pathogen interactions and how B. crocidurae manipulates host immunity. In this study, we used a high-throughput screen to identify host proteins that interact with relapsing fever-causing Borrelia species. We identified CD55 as one of the host proteins that bind to B. crocidurae and B. persica, the two causes of relapsing fever in Africa and Eurasia. We show that the interaction of B. crocidurae with CD55, present on the surface of erythrocytes, is key to immune evasion and successful infection in vivo. Our study further shows the role of CD55 in complement regulation, regulation of inflammatory cytokine levels, and innate immunity during relapsing fever infection. Overall, this study sheds light on host-pathogen interactions during relapsing fever infection in vivo.


Subject(s)
Blood Group Antigens , Borrelia , Relapsing Fever , Humans , Animals , Mice , Relapsing Fever/epidemiology , Immune Evasion , Borrelia/physiology , Rodentia , Cytokines
16.
Cell Host Microbe ; 30(7): 988-1002.e6, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35640610

ABSTRACT

The impacts of individual commensal microbes on immunity and disease can differ dramatically depending on the surrounding microbial context; however, the specific bacterial combinations that dictate divergent immunological outcomes remain largely undefined. Here, we characterize an immunostimulatory Allobaculum species from an inflammatory bowel disease patient that exacerbates colitis in gnotobiotic mice. Allobaculum inversely associates with the taxonomically divergent immunostimulatory species Akkermansia muciniphila in human-microbiota-associated mice and human cohorts. Co-colonization with A. muciniphila ameliorates Allobaculum-induced intestinal epithelial cell activation and colitis in mice, whereas Allobaculum blunts the A.muciniphila-specific systemic antibody response and reprograms the immunological milieu in mesenteric lymph nodes by blocking A.muciniphila-induced dendritic cell activation and T cell expansion. These studies thus identify a pairwise reciprocal interaction between human gut bacteria that dictates divergent immunological outcomes. Furthermore, they establish a generalizable framework to define the contextual cues contributing to the "incomplete penetrance" of microbial impacts on human disease.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Germ-Free Life , Humans , Inflammatory Bowel Diseases/microbiology , Intestines/microbiology , Mice , Verrucomicrobia
17.
Cell Rep Methods ; 2(2)2022 02 28.
Article in English | MEDLINE | ID: mdl-35360706

ABSTRACT

Autoantibodies that recognize extracellular proteins (the exoproteome) exert potent biological effects but are challenging to detect. Here, we developed rapid extracellular antigen profiling (REAP), a high-throughput technique for the comprehensive discovery of exoproteome-targeting autoantibodies. Patient samples are applied to a genetically barcoded yeast surface display library containing 2,688 human extracellular proteins. Antibody-coated yeast are isolated, and sequencing of barcodes is used to identify displayed antigens. To benchmark REAP's performance, we screened 77 patients with autoimmune polyglandular syndrome type 1 (APS-1). REAP sensitively and specifically detected both known and previously unidentified autoantibodies in APS-1. We further screened 106 patients with systemic lupus erythematosus (SLE) and identified numerous autoantibodies, several of which were associated with disease severity or specific clinical manifestations and exerted functional effects on cell signaling ex vivo. These findings demonstrate the utility of REAP to atlas the expansive landscape of exoproteome-targeting autoantibodies and their impacts on patient health outcomes.


Subject(s)
Lupus Erythematosus, Systemic , Polyendocrinopathies, Autoimmune , Humans , Autoantibodies , Saccharomyces cerevisiae , Lupus Erythematosus, Systemic/genetics , Autoantigens , Patient Acuity , Polyendocrinopathies, Autoimmune/complications
18.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35217624

ABSTRACT

An increased incidence of chilblains has been observed during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and attributed to viral infection. Direct evidence of this relationship has been limited, however, as most cases do not have molecular evidence of prior SARS-CoV-2 infection with PCR or antibodies. We enrolled a cohort of 23 patients who were diagnosed and managed as having SARS-CoV-2-associated skin eruptions (including 21 pandemic chilblains [PC]) during the first wave of the pandemic in Connecticut. Antibody responses were determined through endpoint titration enzyme-linked immunosorbent assay and serum epitope repertoire analysis. T cell responses to SARS-CoV-2 were assessed by T cell receptor sequencing and in vitro SARS-CoV-2 antigen-specific peptide stimulation assays. Immunohistochemical and PCR studies of PC biopsies and tissue microarrays for evidence of SARS-CoV-2 were performed. Among patients diagnosed and managed as "covid toes" during the pandemic, we find a percentage of prior SARS-CoV-2 infection (9.5%) that approximates background seroprevalence (8.5%) at the time. Immunohistochemistry studies suggest that SARS-CoV-2 staining in PC biopsies may not be from SARS-CoV-2. Our results do not support SARS-CoV-2 as the causative agent of pandemic chilblains; however, our study does not exclude the possibility of SARS-CoV-2 seronegative abortive infections.


Subject(s)
COVID-19/complications , Chilblains/immunology , Adult , COVID-19/epidemiology , Chilblains/epidemiology , Chilblains/virology , Connecticut/epidemiology , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/immunology , Young Adult
19.
Nat Biotechnol ; 40(3): 374-381, 2022 03.
Article in English | MEDLINE | ID: mdl-34675424

ABSTRACT

Multimodal measurements of single-cell profiles are proving increasingly useful for characterizing cell states and regulatory mechanisms. In the present study, we developed PHAGE-ATAC (Assay for Transposase-Accessible Chromatin), a massively parallel droplet-based method that uses phage displaying, engineered, camelid single-domain antibodies ('nanobodies') for simultaneous single-cell measurements of protein levels and chromatin accessibility profiles, and mitochondrial DNA-based clonal tracing. We use PHAGE-ATAC for multimodal analysis in primary human immune cells, sample multiplexing, intracellular protein analysis and the detection of SARS-CoV-2 spike protein in human cell populations. Finally, we construct a synthetic high-complexity phage library for selection of antigen-specific nanobodies that bind cells of particular molecular profiles, opening an avenue for protein detection, cell characterization and screening with single-cell genomics.


Subject(s)
Bacteriophages , COVID-19 , Bacteriophages/genetics , Chromatin/genetics , Humans , SARS-CoV-2 , Single-Cell Analysis/methods , Spike Glycoprotein, Coronavirus
20.
J Infect Dis ; 225(3): 374-384, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34718647

ABSTRACT

BACKGROUND: The underlying immunologic deficiencies enabling severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection are currently unknown. We describe deep longitudinal immune profiling of a transplant recipient hospitalized twice for coronavirus disease 2019 (COVID-19). METHODS: A 66-year-old male renal transplant recipient was hospitalized with COVID-19 March 2020 then readmitted to the hospital with COVID-19 233 days after initial diagnosis. Virologic and immunologic investigations were performed on samples from the primary and secondary infections. RESULTS: Whole viral genome sequencing and phylogenetic analysis revealed that viruses causing both infections were caused by distinct genetic lineages without evidence of immune escape mutations. Longitudinal comparison of cellular and humoral responses during primary SARS-CoV-2 infection revealed that this patient responded to the primary infection with low neutralization titer anti-SARS-CoV-2 antibodies that were likely present at the time of reinfection. CONCLUSIONS: The development of neutralizing antibodies and humoral memory responses in this patient failed to confer protection against reinfection, suggesting that they were below a neutralizing titer threshold or that additional factors may be required for efficient prevention of SARS-CoV-2 reinfection. Development of poorly neutralizing antibodies may have been due to profound and relatively specific reduction in naive CD4 T-cell pools. Seropositivity alone may not be a perfect correlate of protection in immunocompromised patients.


Subject(s)
COVID-19 , Reinfection , Transplant Recipients , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Humans , Male , Organ Transplantation , Phylogeny , Reinfection/immunology , Reinfection/virology , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...