Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38746172

ABSTRACT

Background: The study aim was to determine whether associations of antenatal maternal anaemia with smaller corpus callosum, putamen, and caudate nucleus volumes previously described in children at age 2-3 years persist to age 6-7 years in the Drakenstein Child Health Study (DCHS). Methods: This neuroimaging sub-study was nested within the DCHS, a South African population-based birth cohort. Pregnant women were enrolled (2012-2015) and mother-child dyads were followed prospectively. A sub-group of children had magnetic resonance imaging at 6-7 years of age (2018-2022). Mothers had haemoglobin measurements during pregnancy and a proportion of children were tested postnatally. Maternal anaemia (haemoglobin<11g/dL) and child anaemia were classified using WHO and local guidelines. Linear modeling was used to investigate associations between antenatal maternal anaemia status, maternal haemoglobin concentrations, and regional child brain volumes. Models included potential confounders and were conducted with and without child anaemia to assess the relative roles of antenatal versus postnatal anaemia. Results: Overall, 157 children (Mean [SD] age of 75.54 [4.77] months; 84 [53.50%] male) were born to mothers with antenatal haemoglobin data. The prevalence of maternal anaemia during pregnancy was 31.85% (50/157). In adjusted models, maternal anaemia status was associated with smaller volumes of the total corpus callosum (adjusted percentage difference, -6.77%; p=0.003), left caudate nucleus (adjusted percentage difference, -5.98%, p=0.005), and right caudate nucleus (adjusted percentage difference, -6.12%; p=0.003). Continuous maternal haemoglobin was positively associated with total corpus callosum (ß=0.239 [CI: 0.10 to 0.38]; p<0.001) and caudate nucleus (ß=0.165 [CI: 0.02 to 0.31]; p=0.027) volumes. In a sub-group (n=89) with child haemoglobin data (Mean [SD] age of 76.06[4.84]), the prevalence of antenatal maternal anaemia and postnatal child anaemia was 38.20% (34/89) and 47.19% (42/89), respectively. There was no association between maternal and child anaemia (c2 = 0.799; p=0.372), and child anaemia did not contribute to regional brain volume differences associated with maternal anaemia. Conclusions: Associations between maternal anaemia and regional child brain volumes previously reported at 2-3 years of age were consistent and persisted to 6-7 years of age. Findings support the importance of optimizing antenatal maternal health and reinforce these brain regions as a future research focus on intervention outcomes.

2.
Front Neurosci ; 17: 1251575, 2023.
Article in English | MEDLINE | ID: mdl-37901429

ABSTRACT

Objective: Alterations in regional neurometabolite levels as well as impaired neurodevelopmental outcomes have previously been observed in children who are HIV-exposed uninfected (CHEU). However, little is known about how neurometabolite profiles may relate to their developmental impairment. This study aimed to compare neurometabolite concentrations in school-aged CHEU and children who are HIV-unexposed (CHU) and to explore associations of neurometabolite profiles with functional neurodevelopment in the context of perinatal HIV exposure. Methods: We used 3 T single voxel proton magnetic resonance spectroscopy (1H-MRS) to quantify absolute and relative neurometabolites in the parietal gray and parietal white matter in school-aged CHEU and aged- and community-matched CHU. Functional neurodevelopmental outcomes were assessed using the early learning outcome measure (ELOM) tool at 6 years of age. Results: Our study included 152 school-aged children (50% males), 110 CHEU and 42 CHU, with an average age of 74 months at the neuroimaging visit. In an adjusted multiple linear regression analysis, significantly lower glutamate (Glu) concentrations were found in CHEU as compared to CHU in the parietal gray matter (absolute Glu, p = 0.046; Glu/total creatine (Cr+PCr) ratios, p = 0.035) and lower total choline to creatine ratios (GPC+PCh/Cr+PCr) in the parietal white matter (p = 0.039). Using factor analysis and adjusted logistic regression analysis, a parietal gray matter Glu and myo-inositol (Ins) dominated factor was associated with HIV exposure status in both unadjusted (OR 0.55, 95% CI 0.17-0.45, p = 0.013) and adjusted analyses (OR 0.59, 95% CI 0.35-0.94, p = 0.031). With Ins as one of the dominating metabolites, this neurometabolic factor was similar to that found at the age of two years. Furthermore, this factor was also found to be correlated with ELOM scores of gross motor development in CHEU (Pearson's r = -0.48, p = 0.044). In addition, in CHEU, there was a significant association between Ins/Cr+PCr ratios in the parietal white matter and ELOM scores of fine motor coordination and visual motor integration in CHEU (Pearson's r = 0.51, p = 0.032). Conclusion: Reduced Glu concentrations in the parietal gray matter may suggest regional alterations in excitatory glutamatergic transmission pathways in the context of perinatal HIV and/or antiretroviral therapy (ART) exposure, while reduced Cho ratios in the parietal white matter suggest regional myelin loss. Identified associations between neurometabolite profiles and gross and fine motor developmental outcomes in CHEU are suggestive of a neurometabolic mechanism that may underlie impaired motor neurodevelopmental outcomes observed in CHEU.

3.
JAMA Netw Open ; 5(12): e2244772, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36459137

ABSTRACT

Importance: Anemia affects millions of pregnant women and their children worldwide, particularly in low- and middle-income countries. Although anemia in pregnancy is a well-described risk factor for cognitive development, the association with child brain structure is poorly understood. Objective: To explore the association of anemia during pregnancy and postnatal child anemia with brain structure in early life. Design, Setting, and Participants: This neuroimaging nested cohort study was embedded within the Drakenstein Child Health Study (DCHS), a population-based birth cohort in South Africa. Pregnant individuals were enrolled into the DCHS between 2012 and 2015 from 2 clinics in a periurban setting. Mother-child pairs were assessed prospectively; follow-up is ongoing. A subgroup of children had brain magnetic resonance imaging (MRI) at age 2 to 3 years from 2015 to 2018. This study focused on the 147 pairs with structural neuroimaging and available hemoglobin data. Data analyses were conducted in 2021 and 2022. Exposures: Mothers had hemoglobin measurements during pregnancy, and a subgroup of children had hemoglobin measurements during early life. Anemia was classified as hemoglobin levels less than 11 g/dL based on World Health Organization guidelines; children younger than 6 months were classified using local guidelines. Main Outcomes and Measures: Child brain volumes of global, subcortical, and corpus callosum structures were quantified using T1-weighted MRI. Linear regression models were used to analyze the associations between maternal and child anemia with child brain volumes, accounting for potential confounders. Results: Of 147 children (mean [SD] age at MRI, 34 [2] months; 83 [56.5%] male) with high-resolution MRI scans, prevalence of maternal anemia in pregnancy was 31.3% (46 of 147; median [IQR] gestation of measurement: 13 [9-20] weeks). Maternal anemia during pregnancy was significantly associated with smaller volumes of the child caudate bilaterally (adjusted percentage difference, -5.30% [95% CI, -7.01 to -3.59]), putamen (left hemisphere: -4.33% [95% CI, -5.74 to -2.92]), and corpus callosum (-7.75% [95% CI, -11.24 to -4.26]). Furthermore, antenatal maternal hemoglobin levels were also associated with brain volumes in the caudate (left hemisphere: standardized ß = 0.15 [95% CI, 0.02 to 0.28]; right hemisphere: ß = 0.15 [95% CI, 0.02 to 0.27]), putamen left hemisphere (ß = 0.21 [95% CI, 0.07 to 0.35]), and corpus callosum (ß = 0.24 [95% CI, 0.09 to 0.39]). Prevalence of child anemia was 52.5% (42 of 80; median [IQR] age of measurement: 8.0 [2.7 to 14.8] months). Child anemia was not associated with brain volumes, nor did it mediate the association of maternal anemia during pregnancy with brain volumes. Conclusions and Relevance: In this cohort study, anemia in pregnancy was associated with altered child brain structural development. Given the high prevalence of antenatal maternal anemia worldwide, these findings suggest that optimizing interventions during pregnancy may improve child brain outcomes.


Subject(s)
Anemia , Brain , Pregnancy , Child , Female , Humans , Male , Child, Preschool , Infant , South Africa/epidemiology , Cohort Studies , Brain/diagnostic imaging , Anemia/diagnostic imaging , Anemia/epidemiology , Mothers
4.
J Autism Dev Disord ; 52(4): 1693-1711, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34105048

ABSTRACT

Social impairment in Autism Spectrum Disorder (ASD) has been linked to Theory of Mind (ToM) deficits. However, little research has investigated the relationship between ToM and moral decision-making in children with ASD. This study compared moral decision-making and ToM between aggregate-matched ASD and neurotypical boys (n = 38 per group; aged 6-12). In a third-party resource allocation task manipulating recipient merit, wealth, and health, neurotypical children allocated significantly more resources to the morally deserving recipient, suggesting equitable allocation. A comparatively larger portion of the ASD group allocated equally. ToM emerged as a predictor of moral decision-making. We suggest that ToM (cognitive empathy) deficits may underly atypical moral decision-making in ASD by limiting the integration of empathic arousal (affective empathy) with moral information.


Subject(s)
Autism Spectrum Disorder , Theory of Mind , Autism Spectrum Disorder/psychology , Child , Empathy , Humans , Male , Morals
SELECTION OF CITATIONS
SEARCH DETAIL
...