Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38632040

ABSTRACT

Aquatic ecosystems are large contributors to global methane (CH4) emissions. Eutrophication significantly enhances CH4-production as it stimulates methanogenesis. Mitigation measures aimed at reducing eutrophication, such as the addition of metal salts to immobilize phosphate (PO43-), are now common practice. However, the effects of such remedies on methanogenic and methanotrophic communities-and therefore on CH4-cycling-remain largely unexplored. Here, we demonstrate that Fe(II)Cl2 addition, used as PO43- binder, differentially affected microbial CH4 cycling-processes in field experiments and batch incubations. In the field experiments, carried out in enclosures in a eutrophic pond, Fe(II)Cl2 application lowered in-situ CH4 emissions by lowering net CH4-production, while sediment aerobic CH4-oxidation rates-as found in batch incubations of sediment from the enclosures-did not differ from control. In Fe(II)Cl2-treated sediments, a decrease in net CH4-production rates could be attributed to the stimulation of iron-dependent anaerobic CH4-oxidation (Fe-AOM). In batch incubations, anaerobic CH4-oxidation and Fe(II)-production started immediately after CH4 addition, indicating Fe-AOM, likely enabled by favorable indigenous iron cycling conditions and the present methanotroph community in the pond sediment. 16S rRNA sequencing data confirmed the presence of anaerobic CH4-oxidizing archaea and both iron-reducing and iron-oxidizing bacteria in the tested sediments. Thus, besides combatting eutrophication, Fe(II)Cl2 application can mitigate CH4 emissions by reducing microbial net CH4-production and stimulating Fe-AOM.


Subject(s)
Archaea , Geologic Sediments , Methane , Oxidation-Reduction , Ponds , Methane/metabolism , Ponds/microbiology , Anaerobiosis , Geologic Sediments/microbiology , Archaea/metabolism , Archaea/genetics , Iron/metabolism , Bacteria/metabolism , Bacteria/genetics , Eutrophication , RNA, Ribosomal, 16S/genetics , Ferrous Compounds/metabolism
2.
Chemosphere ; 333: 138908, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37187378

ABSTRACT

Organic micropollutants (OMPs) consist of widely used chemicals such as pharmaceuticals and pesticides that can persist in surface and groundwaters at low concentrations (ng/L to µg/L) for a long time. The presence of OMPs in water can disrupt aquatic ecosystems and threaten the quality of drinking water sources. Wastewater treatment plants (WWTPs) rely on microorganisms to remove major nutrients from water, but their effectiveness at removing OMPs varies. Low removal efficiency might be the result of low concentrations, inherent stable chemical structures of OMPs, or suboptimal conditions in WWTPs. In this review, we discuss these factors, with special emphasis on the ongoing adaptation of microorganisms to degrade OMPs. Finally, recommendations are drawn to improve the prediction of OMP removal in WWTPs and to optimize the design of new microbial treatment strategies. OMP removal seems to be concentration-, compound-, and process-dependent, which poses a great complexity to develop accurate prediction models and effective microbial processes targeting all OMPs.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Wastewater , Waste Disposal, Fluid , Ecosystem , Water Pollutants, Chemical/analysis
3.
J Hazard Mater ; 445: 130558, 2023 03 05.
Article in English | MEDLINE | ID: mdl-36495641

ABSTRACT

Benzimidazole fungicides are frequently detected in aquatic environments and pose a serious health risk. Here, we investigated the metabolic capacity of the recently discovered complete ammonia-oxidizing (comammox) Nitrospira inopinata and kreftii to transform a representative set of benzimidazole fungicides (i.e., benzimidazole, albendazole, carbendazim, fuberidazole, and thiabendazole). Ammonia-oxidizing bacteria and archaea, as well as the canonical nitrite-oxidizing Nitrospira exhibited no or minor biotransformation activity towards all the five benzimidazole fungicides. In contrast, the investigated comammox bacteria actively transformed all the five benzimidazole fungicides, except for thiabendazole. The identified transformation products indicated hydroxylation, S-oxidation, and glycosylation as the major biotransformation pathways of benzimidazole fungicides. We speculated that these reactions were catalyzed by comammox-specific ammonia monooxygenase, cytochrome P450 monooxygenases, and glycosylases, respectively. Interestingly, the exposure to albendazole enhanced the expression of the antibiotic resistance gene acrB of Nitrospira inopinata, suggesting that some benzimidazole fungicides could act as environmental stressors that trigger cellular defense mechanisms. Altogether, this study demonstrated the distinct substrate specificity of comammox bacteria towards benzimidazole fungicides and implies their significant roles in the biotransformation of these fungicides in nitrifying environments.


Subject(s)
Fungicides, Industrial , Fungicides, Industrial/toxicity , Fungicides, Industrial/metabolism , Proteomics , Ammonia/metabolism , Albendazole , Thiabendazole , Nitrification , Bacteria/metabolism , Archaea/metabolism , Biotransformation , Oxidation-Reduction , Benzimidazoles/toxicity , Benzimidazoles/metabolism , Phylogeny
4.
Water Res X ; 16: 100152, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36042984

ABSTRACT

Pharmaceuticals are relatively new to nature and often not completely removed in wastewater treatment plants (WWTPs). Consequently, these micropollutants end up in water bodies all around the world posing a great environmental risk. One exception to this recalcitrant conversion is paracetamol, whose full degradation has been linked to several microorganisms. However, the genes and corresponding proteins involved in microbial paracetamol degradation are still elusive. In order to improve our knowledge of the microbial paracetamol degradation pathway, we inoculated a bioreactor with sludge of a hospital WWTP (Pharmafilter, Delft, NL) and fed it with paracetamol as the sole carbon source. Paracetamol was fully degraded without any lag phase and the enriched microbial community was investigated by metagenomic and metatranscriptomic analyses, which demonstrated that the microbial community was very diverse. Dilution and plating on paracetamol-amended agar plates yielded two Pseudomonas sp. isolates: a fast-growing Pseudomonas sp. that degraded 200 mg/L of paracetamol in approximately 10 h while excreting 4-aminophenol, and a slow-growing Pseudomonas sp. that degraded paracetamol without obvious intermediates in more than 90 days. Each Pseudomonas sp. contained a different highly-expressed amidase (31% identity to each other). These amidase genes were not detected in the bioreactor metagenome suggesting that other as-yet uncharacterized amidases may be responsible for the first biodegradation step of paracetamol. Uncharacterized deaminase genes and genes encoding dioxygenase enzymes involved in the catabolism of aromatic compounds and amino acids were the most likely candidates responsible for the degradation of paracetamol intermediates based on their high expression levels in the bioreactor metagenome and the Pseudomonas spp. genomes. Furthermore, cross-feeding between different community members might have occurred to efficiently degrade paracetamol and its intermediates in the bioreactor. This study increases our knowledge about the ongoing microbial evolution towards biodegradation of pharmaceuticals and points to a large diversity of (amidase) enzymes that are likely involved in paracetamol metabolism in WWTPs.

5.
Microorganisms ; 9(10)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34683468

ABSTRACT

Serine/threonine kinase PknB and its corresponding phosphatase Stp are important regulators of many cell functions in the pathogen S. aureus. Genome-scale gene expression data of S. aureus strain NewHG (sigB+) elucidated their effect on physiological functions. Moreover, metabolic modelling from these data inferred metabolic adaptations. We compared wild-type to deletion strains lacking pknB, stp or both. Ser/Thr phosphorylation of target proteins by PknB switched amino acid catabolism off and gluconeogenesis on to provide the cell with sufficient components. We revealed a significant impact of PknB and Stp on peptidoglycan, nucleotide and aromatic amino acid synthesis, as well as catabolism involving aspartate transaminase. Moreover, pyrimidine synthesis was dramatically impaired by stp deletion but only slightly by functional loss of PknB. In double knockouts, higher activity concerned genes involved in peptidoglycan, purine and aromatic amino acid synthesis from glucose but lower activity of pyrimidine synthesis from glucose compared to the wild type. A second transcriptome dataset from S. aureus NCTC 8325 (sigB-) validated the predictions. For this metabolic adaptation, PknB was found to interact with CdaA and the yvcK/glmR regulon. The involved GlmR structure and the GlmS riboswitch were modelled. Furthermore, PknB phosphorylation lowered the expression of many virulence factors, and the study shed light on S. aureus infection processes.

6.
Appl Microbiol Biotechnol ; 105(16-17): 6515-6527, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34423412

ABSTRACT

Pharmaceuticals find their way to the aquatic environment via wastewater treatment plants (WWTPs). Biotransformation plays an important role in mitigating environmental risks; however, a mechanistic understanding of involved processes is limited. The aim of this study was to evaluate potential relationships between first-order biotransformation rate constants (kb) of nine pharmaceuticals and initial concentration of the selected compounds, and sampling season of the used activated sludge inocula. Four-day bottle experiments were performed with activated sludge from WWTP Groesbeek (The Netherlands) of two different seasons, summer and winter, spiked with two environmentally relevant concentrations (3 and 30 nM) of pharmaceuticals. Concentrations of the compounds were measured by LC-MS/MS, microbial community composition was assessed by 16S rRNA gene amplicon sequencing, and kb values were calculated. The biodegradable pharmaceuticals were acetaminophen, metformin, metoprolol, terbutaline, and phenazone (ranked from high to low biotransformation rates). Carbamazepine, diatrizoic acid, diclofenac, and fluoxetine were not converted. Summer and winter inocula did not show significant differences in microbial community composition, but resulted in a slightly different kb for some pharmaceuticals. Likely microbial activity was responsible instead of community composition. In the same inoculum, different kb values were measured, depending on initial concentration. In general, biodegradable compounds had a higher kb when the initial concentration was higher. This demonstrates that Michealis-Menten kinetic theory has shortcomings for some pharmaceuticals at low, environmentally relevant concentrations and that the pharmaceutical concentration should be taken into account when measuring the kb in order to reliably predict the fate of pharmaceuticals in the WWTP. KEY POINTS: • Biotransformation and sorption of pharmaceuticals were assessed in activated sludge. • Higher initial concentrations resulted in higher biotransformation rate constants for biodegradable pharmaceuticals. • Summer and winter inocula produced slightly different biotransformation rate constants although microbial community composition did not significantly change.


Subject(s)
Pharmaceutical Preparations , Water Pollutants, Chemical , Biotransformation , Chromatography, Liquid , RNA, Ribosomal, 16S/genetics , Sewage , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis
7.
Microb Biotechnol ; 14(4): 1707-1721, 2021 07.
Article in English | MEDLINE | ID: mdl-34132479

ABSTRACT

Pharmaceuticals are often not fully removed in wastewater treatment plants (WWTPs) and are thus being detected at trace levels in water bodies all over the world posing a risk to numerous organisms. These organic micropollutants (OMPs) reach WWTPs at concentrations sometimes too low to serve as growth substrate for microorganisms; thus, co-metabolism is thought to be the main conversion mechanism. In this study, the microbial removal of six pharmaceuticals was investigated in a membrane bioreactor at increasing concentrations (4-800 nM) of the compounds and using three different hydraulic retention times (HRT; 1, 3.5 and 5 days). The bioreactor was inoculated with activated sludge from a municipal WWTP and fed with ammonium, acetate and methanol as main growth substrates to mimic co-metabolism. Each pharmaceutical had a different average removal efficiency: acetaminophen (100%) > fluoxetine (50%) > metoprolol (25%) > diclofenac (20%) > metformin (15%) > carbamazepine (10%). Higher pharmaceutical influent concentrations proportionally increased the removal rate of each compound, but surprisingly not the removal percentage. Furthermore, only metformin removal improved to 80-100% when HRT or biomass concentration was increased. Microbial community changes were followed with 16S rRNA gene amplicon sequencing in response to the increment of pharmaceutical concentration: Nitrospirae and Planctomycetes 16S rRNA relative gene abundance decreased, whereas Acidobacteria and Bacteroidetes increased. Remarkably, the Dokdonella genus, previously implicated in acetaminophen metabolism, showed a 30-fold increase in abundance at the highest concentration of pharmaceuticals applied. Taken together, these results suggest that the incomplete removal of most pharmaceutical compounds in WWTPs is dependent on neither concentration nor reaction time. Accordingly, we propose a chemical equilibrium or a growth substrate limitation as the responsible mechanisms of the incomplete removal. Finally, Dokdonella could be the main acetaminophen degrader under activated sludge conditions, and non-antibiotic pharmaceuticals might still be toxic to relevant WWTP bacteria.


Subject(s)
Pharmaceutical Preparations , Water Pollutants, Chemical , Bioreactors , RNA, Ribosomal, 16S/genetics , Reaction Time , Sewage , Waste Disposal, Fluid , Wastewater/analysis , Water Pollutants, Chemical/analysis
8.
Water Res X ; 9: 100065, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32984801

ABSTRACT

Wastewater treatment plants (WWTPs) are crucial for producing clean effluents from polluting sources such as hospitals, industries, and municipalities. In recent decades, many new organic compounds have ended up in surface waters in concentrations that, while very low, cause (chronic) toxicity to countless organisms. These organic micropollutants (OMPs) are usually quite recalcitrant and not sufficiently removed during wastewater treatment. Microbial degradation plays a pivotal role in OMP conversion. Microorganisms can adapt their metabolism to the use of novel molecules via mutations and rearrangements of existing genes in new clusters. Many catabolic genes have been found adjacent to mobile genetic elements (MGEs), which provide a stable scaffold to host new catabolic pathways and spread these genes in the microbial community. These mobile systems could be engineered to enhance OMP degradation in WWTPs, and this review aims to summarize and better understand the role that MGEs might play in the degradation and wastewater treatment process. Available data about the presence of catabolic MGEs in WWTPs are reviewed, and current methods used to identify and measure MGEs in environmental samples are critically evaluated. Finally, examples of how these MGEs could be used to improve micropollutant degradation in WWTPs are outlined. In the near future, advances in the use of MGEs will hopefully enable us to apply selective augmentation strategies to improve OMP conversion in WWTPs.

9.
J Infect Dis ; 218(1): 165-170, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29618104

ABSTRACT

Cellular metabolism can influence host immune responses to Mycobacterium tuberculosis. Using a systems biology approach, differential expression of 292 metabolic genes involved in glycolysis, glutathione, pyrimidine, and inositol phosphate pathways was evident at the site of a human tuberculin skin test challenge in patients with active tuberculosis infection. For 28 metabolic genes, we identified single nucleotide polymorphisms that were trans-acting for in vitro cytokine responses to M. tuberculosis stimulation, including glutathione and pyrimidine metabolism genes that alter production of Th1 and Th17 cytokines. Our findings identify novel therapeutic targets in host metabolism that may shape protective immunity to tuberculosis.


Subject(s)
Cytokines/metabolism , Metabolism/genetics , Mycobacterium tuberculosis/immunology , Th1 Cells/metabolism , Th17 Cells/metabolism , Tuberculosis/pathology , Adult , Female , Gene Expression Profiling , Humans , Male , Systems Biology/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...