Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
2.
ACS Omega ; 8(41): 38233-38242, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37867705

ABSTRACT

In this study, we dissolved Bombyx mori degummed silk [i.e., silk fibroin (SF)] and salmon sperm deoxyribonucleic acid (DNA) in water and used a bioinspired spinning process to obtain an electrospun nanofibrous SF-based patch (ESF). We investigated the bidirectional macroscale actuation behavior of ESF in response to water vapor and its UV-blocking properties as well as those of ESF/DNA films. Fourier transform infrared (FTIR) results suggest that the formation of ß-sheet-rich structures promotes the actuation effect. ESF/DNA film with high-ordered and ß-sheet-rich structures exhibits higher electrical conductivity and is water-insoluble. Given the intrinsic ability of both SF and DNA to absorb UV radiation, we performed biological experiments on the viability of keratinocyte HaCaT cells after exposure to solar spectrum components. Our findings indicate that the ESF/DNA patch is photoprotective and can increase the cellular viability of keratinocytes after UV exposure. Furthermore, we demonstrated that ESF/DNA patches treated with water vapor can serve as suitable scaffolds for tissue engineering and can improve tissue regeneration when cellularized with HaCaT cells. The 3D shape morphing capability of these patches, along with their potential as UV filters, could offer significant practical advantages in tissue engineering.

3.
J Funct Biomater ; 14(5)2023 May 18.
Article in English | MEDLINE | ID: mdl-37233390

ABSTRACT

In this study, we fabricated adhesive patches from silkworm-regenerated silk and DNA to safeguard human skin from the sun's rays. The patches are realized by exploiting the dissolution of silk fibers (e.g., silk fibroin (SF)) and salmon sperm DNA in formic acid and CaCl2 solutions. Infrared spectroscopy is used to investigate the conformational transition of SF when combined with DNA; the results indicated that the addition of DNA provides an increase in the SF crystallinity. UV-Visible absorption and circular dichroism spectroscopy showed strong absorption in the UV region and the presence of B-form of DNA once dispersed in the SF matrix, respectively. Water absorption measurements as well as thermal dependence of water sorption and thermal analysis, suggested the stability of the fabricated patches. Biological results on cellular viability (MTT assay) of keratinocyte HaCaT cells after exposures to the solar spectrum showed that both SF and SF/DNA patches are photo-protective by increasing the cellular viability of keratinocytes after UV component exposure. Overall, these SF/DNA patches promise applications in wound dressing for practical biomedical purposes.

4.
Int J Mol Sci ; 24(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37240437

ABSTRACT

Guanine-rich DNA sequences can fold into non-canonical nucleic acid structures called G-quadruplexes (G4s). These nanostructures have strong implications in many fields, from medical science to bottom-up nanotechnologies. As a result, ligands interacting with G4s have attracted great attention as candidates in medical therapies, molecular probe applications, and biosensing. In recent years, the use of G4-ligand complexes as photopharmacological targets has shown significant promise for developing novel therapeutic strategies and nanodevices. Here, we studied the possibility of manipulating the secondary structure of a human telomeric G4 sequence through the interaction with two photosensitive ligands, DTE and TMPyP4, whose response to visible light is different. The effect of these two ligands on G4 thermal unfolding was also considered, revealing the occurrence of peculiar multi-step melting pathways and the different attitudes of the two molecules on the quadruplex stabilization.


Subject(s)
G-Quadruplexes , Humans , Ligands , Light , Telomere/genetics
5.
Int J Mol Sci ; 24(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37047038

ABSTRACT

The main protease (Mpro or 3CLpro) is an enzyme that is evolutionarily conserved among different genera of coronaviruses. As it is essential for processing and maturing viral polyproteins, Mpro has been identified as a promising target for the development of broad-spectrum drugs against coronaviruses. Like SARS-CoV and MERS-CoV, the mature and active form of SARS-CoV-2 Mpro is a dimer composed of identical subunits, each with a single active site. Individual monomers, however, have very low or no catalytic activity. As such, inhibition of Mpro can be achieved by molecules that target the substrate binding pocket to block catalytic activity or target the dimerization process. In this study, we investigated GC376, a transition-state analog inhibitor of the main protease of feline infectious peritonitis coronavirus, and Nirmatrelvir (NMV), an oral, bioavailable SARS-CoV-2 Mpro inhibitor with pan-human coronavirus antiviral activity. Our results show that both GC376 and NMV are capable of strongly binding to SARS-CoV-2 Mpro and altering the monomer-dimer equilibrium by stabilizing the dimeric state. This behavior is proposed to be related to a structured hydrogen-bond network established at the Mpro active site, where hydrogen bonds between Ser1' and Glu166/Phe140 are formed in addition to those achieved by the latter residues with GC376 or NMV.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Cysteine Endopeptidases/metabolism , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Docking Simulation
6.
Sensors (Basel) ; 23(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36992060

ABSTRACT

Wearable and portable devices capable of acquiring cardiac signals are at the frontier of the sport industry. They are becoming increasingly popular for monitoring physiological parameters while practicing sport, given the advances in miniaturized technologies, powerful data, and signal processing applications. Data and signals acquired by these devices are increasingly used to monitor athletes' performances and thus to define risk indices for sport-related cardiac diseases, such as sudden cardiac death. This scoping review investigated commercial wearable and portable devices employed for cardiac signal monitoring during sport activity. A systematic search of the literature was conducted on PubMed, Scopus, and Web of Science. After study selection, a total of 35 studies were included in the review. The studies were categorized based on the application of wearable or portable devices in (1) validation studies, (2) clinical studies, and (3) development studies. The analysis revealed that standardized protocols for validating these technologies are necessary. Indeed, results obtained from the validation studies turned out to be heterogeneous and scarcely comparable, since the metrological characteristics reported were different. Moreover, the validation of several devices was carried out during different sport activities. Finally, results from clinical studies highlighted that wearable devices are crucial to improve athletes' performance and to prevent adverse cardiovascular events.


Subject(s)
Athletic Performance , Heart Diseases , Wearable Electronic Devices , Humans , Monitoring, Physiologic/methods , Signal Processing, Computer-Assisted
7.
Int J Mol Sci ; 24(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36901712

ABSTRACT

Telomeric G-quadruplexes (G4s) are promising targets in the design and development of anticancer drugs. Their actual topology depends on several factors, resulting in structural polymorphism. In this study, we investigate how the fast dynamics of the telomeric sequence AG3(TTAG3)3 (Tel22) depends on the conformation. By using Fourier transform Infrared spectroscopy, we show that, in the hydrated powder state, Tel22 adopts parallel and mixed antiparallel/parallel topologies in the presence of K+ and Na+ ions, respectively. These conformational differences are reflected in the reduced mobility of Tel22 in Na+ environment in the sub-nanosecond timescale, as probed by elastic incoherent neutron scattering. These findings are consistent with the G4 antiparallel conformation being more stable than the parallel one, possibly due to the presence of ordered hydration water networks. In addition, we study the effect of Tel22 complexation with BRACO19 ligand. Despite the quite similar conformation in the complexed and uncomplexed state, the fast dynamics of Tel22-BRACO19 is enhanced compared to that of Tel22 alone, independently of the ions. We ascribe this effect to the preferential binding of water molecules to Tel22 against the ligand. The present results suggest that the effect of polymorphism and complexation on the G4 fast dynamics is mediated by hydration water.


Subject(s)
Antineoplastic Agents , G-Quadruplexes , Humans , Ligands , Water , Telomere
8.
Nanomaterials (Basel) ; 13(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36770338

ABSTRACT

The demand for next-generation multifunctional nanovectors, combining therapeutic effects with specific cellular targeting, has significantly grown during the last few years, pursuing less invasive therapy strategies. Polyphenol-conjugated silver nanoparticles (AgNPs) appear as potential multifunctional nanovectors, integrating the biorecognition capability and the antioxidant power of polyphenols, the antimicrobial activity of silver, and the drug delivery capability of NPs. We present a spectroscopic and microscopic investigation on polyphenol-synthesized AgNPs, selecting caffeic acid (CA) and catechol (CT) as model polyphenols and using them as reducing agents for the AgNP green synthesis, both in the presence and in the absence of a capping agent. We exploit the plasmonic properties of AgNPs to collect Surface-Enhanced Raman Scattering (SERS) spectra from the nanosized region next to the Ag surface and to characterize the molecular environment in the proximity of the NP, assessing the orientation and tunable deprotonation level of CA, depending on the synthesis conditions. Our results suggest that the SERS investigation of such nanovectors can provide crucial information for their perspective biomedical application.

9.
ACS Omega ; 7(48): 43729-43737, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36506141

ABSTRACT

The emergence of ionotronic materials has been recently exploited for interfacing electronics and biological tissues, improving sensing with the surrounding environment. In this paper, we investigated the synergistic effect of regenerated silk fibroin (RS) with a plant-derived polyphenol (i.e., chestnut tannin) on ionic conductivity and how water molecules play critical roles in regulating ion mobility in these materials. In particular, we observed that adding tannin to RS increases the ionic conductivity, and this phenomenon is accentuated by increasing the hydration. We also demonstrated how silk-based hybrids could be used as building materials for scaffolds where human fibroblast and neural progenitor cells can highly proliferate. Finally, after proving their biocompatibility, RS hybrids demonstrate excellent three-dimensional (3D) printability via extrusion-based 3D printing to fabricate a soft sensor that can detect charged objects by sensing the electric fields that originate from them. These findings pave the way for a viable option for cell culture and novel sensors, with the potential base for tissue engineering and health monitoring.

10.
Phys Chem Chem Phys ; 24(47): 29232-29240, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36445842

ABSTRACT

G-quadruplexes (G4s) formed by the human telomeric sequence AG3 (TTAG3)3 (Tel22) play a key role in cancer and aging. We combined elastic incoherent neutron scattering (EINS) and quasielastic incoherent neutron scattering (QENS) to characterize the internal dynamics of Tel22 G4s and to assess how it is affected by complexation with two standard ligands, Berberine and BRACO19. We show that the interaction with the two ligands induces an increase of the overall mobility of Tel22 as quantified by the mean squared displacements (MSD) of hydrogen atoms. At the same time, the complexes display a lower stiffness than G4 alone. Two different types of motion characterize the G4 nanosecond timescale dynamics. Upon complexation, an increasing fraction of G4 atomic groups participate in this fast dynamics, along with an increase in the relevant characteristic length scales. We suggest that the entropic contribution to the conformational free energy of these motions might be crucial for the complexation mechanisms.


Subject(s)
Telomere , Humans
11.
Molecules ; 27(11)2022 May 29.
Article in English | MEDLINE | ID: mdl-35684430

ABSTRACT

Due to the increasing tattoo practicing in Eastern countries and general concern on tattoo ink composition and safety, the green tattoo inks Green Concentrate by Eternal, for European and "for Asia Market Only" were analyzed, under the premise that only the former falls under a composition regulation. A separation of the additives from the pigment was carried out by successive extraction in solvents of different polarities, i.e., water, acetone and dichloromethane. The solid residues were analyzed by IR and Raman spectroscopies, the liquid fractions by GC/mass spectrometry. The relative pigment load and element traces were also estimated. We found that the European and the Asian inks are based on the same pigment, PG7, restricted in Europe, though at different loads. They have a similar content of harmful impurities, such as Ni, As, Cd and Sb and both contain siloxanes, including harmful D4. Furthermore, they have different physical-chemical properties, the European ink being more hydrophilic, the Asian more hydrophobic. Additionally, the Asian ink contains harmful additives for the solubilization of hydrophobic matrices and by-products of the phthalocyanine synthesis. Teratogenic phthalates are present as well as chlorinated teratogenic and carcinogenic compounds usually associated to the laser treatment for removal purposes, to a larger extent in the European ink. The composition of the inks does not seem to reflect regulatory restrictions, where issued.


Subject(s)
Ink , Tattooing , Asia , Coloring Agents/chemistry , Mass Spectrometry , Spectrum Analysis, Raman/methods
12.
Int J Mol Sci ; 23(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35682687

ABSTRACT

Amyloid-ß peptide (Aß) aggregates are known to be correlated with pathological neurodegenerative diseases. The fibril formation process of such peptides in solution is influenced by several factors, such as the ionic strength of the buffer, concentration, pH, and presence of other molecules, just to mention a few. In this paper, we report a detailed analysis of in vitro Aß42 fibril formation in the presence of cortisol at different relative concentrations. The thioflavin T fluorescence assay allowed us to monitor the fibril formation kinetics, while a morphological characterization of the aggregates was obtained by atomic force microscopy. Moreover, infrared absorption spectroscopy was exploited to investigate the secondary structure changes along the fibril formation path. Molecular dynamics calculations allowed us to understand the intermolecular interactions with cortisol. The combined results demonstrated the influence of cortisol on the fibril formation process: indeed, at cortisol-Aß42 concentration ratio (ρ) close to 0.1 a faster organization of Aß42 fragments into fibrils is promoted, while for ρ = 1 the formation of fibrils is completely inhibited.


Subject(s)
Amyloid beta-Peptides , Hydrocortisone , Amyloid/chemistry , Amyloid beta-Peptides/chemistry , Kinetics , Peptide Fragments/chemistry
13.
Anal Chem ; 93(31): 10825-10833, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34324303

ABSTRACT

DNA/RNA synthesis precursors are especially vulnerable to damage induced by reactive oxygen species occurring following oxidative stress. Guanosine triphosphates are the prevalent oxidized nucleotides, which can be misincorporated during replication, leading to mutations and cell death. Here, we present a novel method based on micro-Raman spectroscopy, combined with ab initio calculations, for the identification, detection, and quantification of oxidized nucleotides at low concentration. We also show that the Raman signature in the terahertz spectral range (<100 cm-1) contains information on the intermolecular assembly of guanine in tetrads, which allows us to further boost the oxidative damage detection limit. Eventually, we provide evidence that similar analyses can be carried out on samples in very small volumes at very low concentrations by exploiting the high sensitivity of surface-enhanced Raman scattering combined with properly designed superhydrophobic substrates. These results pave the way for employing such advanced spectroscopic methods for quantitatively sensing the oxidative damage of nucleotides in the cell.


Subject(s)
Nucleic Acids , Spectrum Analysis, Raman , Guanosine , Nucleotides , Oxidative Stress
14.
Int J Biol Macromol ; 185: 369-376, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34157332

ABSTRACT

Dipole Strength (DS) of the amides has gained a renewed interest in chemical physics since it provides an important tool to disclose the on-site vibrational energy distributions. Apart from earlier experimental efforts on polypeptides, little is still known about DS in complex proteins. We accurately measured the Fourier Transform Infrared absorption spectra of nine proteins in water solution obtaining their Molar Extinction Coefficient in the amide I and II spectral region. Our results show that the amide I DS value depends on the protein secondary structure, being that of the α-rich and unstructured proteins lower by a factor of 2 than that of the ß-rich proteins. The average DS for amino acids in α and ß secondary structures confirms this finding. Normal Mode calculation and Molecular Dynamics were performed and used as tools for data analysis and interpretation. The present outcomes corroborate the hypothesis that antiparallel ß-sheet environment is more prone to delocalize the on-site CO stretching vibration through coupling mechanisms between carbonyl groups, whereas α-helix structures are energetically less stable to permit vibrational mode delocalization.


Subject(s)
Amides/chemistry , Proteins/chemistry , Water/chemistry , Molecular Dynamics Simulation , Protein Structure, Secondary , Spectrophotometry, Infrared , Spectroscopy, Fourier Transform Infrared
15.
Int J Mol Sci ; 22(3)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33572777

ABSTRACT

The interaction of cytochrome c (cyt c) with natural and synthetic membranes is known to be a complex phenomenon, involving both protein and lipid conformational changes. In this paper, we combined infrared and fluorescence spectroscopy to study the structural transformation occurring to the lipid network of cardiolipin-containing large unilamellar vesicles (LUVs). The data, collected at increasing protein/lipid ratio, demonstrate the existence of a multi-phase process, which is characterized by: (i) the interaction of cyt c with the lipid polar heads; (ii) the lipid anchorage of the protein on the membrane surface; and (iii) a long-distance order/disorder transition of the cardiolipin acyl chains. Such effects have been quantitatively interpreted introducing specific order parameters and discussed in the frame of the models on cyt c activity reported in literature.


Subject(s)
Cardiolipins/metabolism , Cytochromes c/metabolism , Animals , Cell Membrane/metabolism , Horses , Spectrometry, Fluorescence , Spectrophotometry, Infrared , Unilamellar Liposomes/metabolism
16.
Int J Biol Macromol ; 170: 88-93, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33358955

ABSTRACT

In the last decades, DNA has been considered far more than the system carrying the essential genetic instructions. Indeed, because of the remarkable properties of the base-pairing specificity and thermoreversibility of the interactions, DNA plays a central role in the design of innovative architectures at the nanoscale. Here, combining complementary DNA strands with a custom-made solution of silver nanoparticles, we realize plasmonic aggregates to exploit the sensitivity of Surface Enhanced Raman Spectroscopy (SERS) for the identification/detection of the distinctive features of DNA hybridization, both in solution and on dried samples. Moreover, SERS allows monitoring the DNA aggregation process by following the temperature variation of a specific spectroscopic marker associated with the Watson-Crick hydrogen bond formation. This temperature-dependent behavior enables us to precisely reconstruct the melting profile of the selected DNA sequences by spectroscopic measurements only.


Subject(s)
DNA, Single-Stranded/chemistry , Nucleic Acid Hybridization , Spectrum Analysis, Raman/methods , Base Pairing , Desiccation , Hydrogen Bonding , Hydroxylamine , Metal Nanoparticles/chemistry , Nucleic Acid Denaturation , Silver/chemistry , Solutions , Temperature
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 236: 118319, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32320913

ABSTRACT

In this work the results deriving from the characterization of materials used by Lucio Fontana to realize some of his artworks are presented. Specifically, object of analyses are three artworks from the collection of National Gallery of Modern and Contemporary Art in Rome, whose complex composition required the combination of different diagnostic techniques for a complete characterization. Microscopic fragments from the artworks were analyzed through X-Ray Fluorescence (XRF), Fourier Transformed InfraRed (FTIR) spectroscopy, in transmission and in Attenuated Total Reflectance (ATR) mode, and Raman spectroscopy to obtain information on the atomic and molecular species and to individuate pigments and binders. In one case, the richness in different materials and the not homogenous distribution on the artwork surface required the additional use of portable techniques, as Visible Light Reflectance and Raman spectroscopies with optical fiber probes, to map the surface. The combination of these techniques resulted to be a powerful tool in order to obtain a complete characterization of artist's choices and provided new information to understand the evolution of his technique.

18.
Molecules ; 25(6)2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32244963

ABSTRACT

Vesuvius eruption that destroyed Pompeii in AD 79 represents one of the most important events in history. The cataclysm left behind an abundance of archeological evidence representing a fundamental source of the knowledge we have about ancient Roman material culture and technology. A great number of textiles have been preserved, rarely maintaining traces of their original color, since they are mainly in the mineralized and carbonized state. However, one outstanding textile sample displays a brilliant purple color and traces of gold strips. Since the purple was one of the most exclusive dyes in antiquity, its presence in an important commercial site like Pompeii induces us to deepen the knowledge of such artifacts and provide further information on their history. For this reason, the characterization of the purple color was the main scope of this research, and to deepen the knowledge of such artifacts, the SERS (Surface Enhanced Raman Scattering) in solution approach was applied. Then, these data were enriched by HPLC-HRMS analyses, which confirmed SERS-based hypotheses and also allowed to hypothesize the species of the origin mollusk. In this context, a step-by-step integrated approach resulted fundamental to maximize the information content and to provide new data on textile manufacturing and trade in antiquity.


Subject(s)
Biological Products/chemistry , Coloring Agents/chemistry , Minerals/chemistry , Textiles/analysis , Biological Products/analysis , Chromatography, High Pressure Liquid , Coloring Agents/analysis , Microscopy , Minerals/analysis , Spectrum Analysis, Raman
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 225: 117474, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31454690

ABSTRACT

Paints used in street art are modern materials subjected to degradation processes, which are very complex and difficult to predict without taking into account of several factors. This study investigates three outdoor murals in Lazio, - namely "graffiti", a word now used to indicate a spontaneous street art tendency consisting in images and writings realized by spray paints in public spaces to provoke passersby -with the aim to discover materials application techniques and chemical composition and figure out whether alteration phenomena occurred. Twenty-two samples were collected, and their stratigraphy was studied by optical microscopy. Fourier Transformed Infrared spectroscopy was used to identify binders and their degradation products in paints and preparatory layers, while for characterization of organic pigments used in all different stratigraphy layers of samples micro-Raman spectroscopy analyses was carried out. Furthermore, micro-Raman spectroscopy allowed to study an unusual patina formed on the surface of a pink paint. This information is useful for artists as well as for conservators, who must face numerous issues related to the preservation of this modern and labile kind of artistic expression, very fashionable nowadays but often created without care for materials duration. Conservation issues were also deepened by interviews with several contemporary mural authors. Artists underlined how contemporary murals are a very heterogeneous means of expression. Different cultural tendencies coexisting result in different attitude towards conservation.

20.
Int J Biol Macromol ; 138: 106-115, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31295496

ABSTRACT

Cytochrome c is a metalloprotein with primary physiological functions in the respiratory chain and in the regulation of cell death signals. Investigating the mechanisms leading to cytochrome c fibril formation is of primary importance for understanding its misfunctioning and, in a wider perspective, for its technologic applications in the field of bio-nanoscience. In this work, we analyzed the morphology and the spectroscopic properties of cytochrome c aggregates, combining the outcomes from electron microscopy, fluorescence, infrared and Raman spectroscopies and making use of statistical tools for the data analysis. The morphology scenario is quite complex, as it points out the presence of aggregates in the shape of platelets as well as fibers at micrometric scale. By infrared and Raman spectroscopy we analyzed the secondary and tertiary structures of unordered aggregates and fibrils, drawing a pathway for their formation at the timescales from tents to hundreds of minutes. Dependence of the fibrillation route on environmental pH, above and below the isoelectric point, and on protein concentration has also been explored. We found that it is possible to direct the process towards the formation of superstructures with different morphologies and different sizes along with fibrils, after destabilization of the native fold and the formation of ß-sheet rich structures. A different mechanism characterizes aggregate/fibril elongation of cyt c in Tris-HCl, in comparison with NaOH environment.


Subject(s)
Cytochromes c/chemistry , Protein Aggregates , Animals , Buffers , Hydrochloric Acid/chemistry , Hydrogen-Ion Concentration , Kinetics , Protein Conformation, beta-Strand , Protein Structure, Secondary , Sodium Hydroxide/chemistry , Spectrum Analysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...