Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 992543, 2022.
Article in English | MEDLINE | ID: mdl-36212340

ABSTRACT

Heterotrimeric Nuclear Factor Y (NF-Y) transcription factors are key regulators of the symbiotic program that controls rhizobial infection and nodule organogenesis. Using a yeast two-hybrid screening, we identified a putative protein kinase of Phaseolus vulgaris that interacts with the C subunit of the NF-Y complex. Physical interaction between NF-YC1 Interacting Protein Kinase (NIPK) and NF-YC1 occurs in the cytoplasm and the plasma membrane. Only one of the three canonical amino acids predicted to be required for catalytic activity is conserved in NIPK and its putative homologs from lycophytes to angiosperms, indicating that NIPK is an evolutionary conserved pseudokinase. Post-transcriptional silencing on NIPK affected infection and nodule organogenesis, suggesting NIPK is a positive regulator of the NF-Y transcriptional complex. In addition, NIPK is required for activation of cell cycle genes and early symbiotic genes in response to rhizobia, including NF-YA1 and NF-YC1. However, strain preference in co-inoculation experiments was not affected by NIPK silencing, suggesting that some functions of the NF-Y complex are independent of NIPK. Our work adds a new component associated with the NF-Y transcriptional regulators in the context of nitrogen-fixing symbiosis.

2.
Front Plant Sci ; 10: 221, 2019.
Article in English | MEDLINE | ID: mdl-30873199

ABSTRACT

Transcription factors of the Nuclear Factor Y (NF-Y) family play essential functions in plant development and plasticity, including the formation of lateral root organs such as lateral root and symbiotic nodules. NF-Ys mediate transcriptional responses by acting as heterotrimers composed of three subunits, NF-YA, NF-YB, and NF-YC, which in plants are encoded by relatively large gene families. We have previously shown that, in the Phaseolus vulgaris × Rhizobium etli interaction, the PvNF-YC1 subunit is involved not only in the formation of symbiotic nodules, but also in the preference exhibited by the plant for rhizobial strains that are more efficient and competitive in nodule formation. PvNF-YC1 forms a heterotrimer with the PvNF-YA1 and PvNF-YB7 subunits. Here, we used promoter:reporter fusions to show that both PvNF-YA1 and PvNF-YB7 are expressed in symbiotic nodules. In addition, we report that knock-down of PvNF-YA1 and its close paralog PvNF-YA9 abolished nodule formation by either high or low efficient strains and arrested rhizobial infection. On the other hand, knock-down of PvNF-YB7 only affected the symbiotic outcome of the high efficient interaction, suggesting that other symbiotic NF-YB subunits might be involved in the more general mechanisms of nodule formation. More important, we present functional evidence supporting that both PvNF-YA1 and PvNF-YB7 are part of the mechanisms that allow P. vulgaris plants to discriminate and select those bacterial strains that perform better in nodule formation, most likely by acting in the same heterotrimeric complex that PvNF-YC1.

3.
Curr Biol ; 28(22): 3562-3577.e6, 2018 11 19.
Article in English | MEDLINE | ID: mdl-30416059

ABSTRACT

The formation of nitrogen-fixing nodules in legumes involves the initiation of synchronized programs in the root epidermis and cortex to allow rhizobial infection and nodule development. In this study, we provide evidence that symplastic communication, regulated by callose turnover at plasmodesmata (PD), is important for coordinating nodule development and infection in Medicago truncatula. Here, we show that rhizobia promote a reduction in callose levels in inner tissues where nodules initiate. This downregulation coincides with the localized expression of M. truncatula ß-1,3-glucanase 2 (MtBG2), encoding a novel PD-associated callose-degrading enzyme. Spatiotemporal analyses revealed that MtBG2 expression expands from dividing nodule initials to rhizobia-colonized cortical and epidermal tissues. As shown by the transport of fluorescent molecules in vivo, symplastic-connected domains are created in rhizobia-colonized tissues and enhanced in roots constitutively expressing MtBG2. MtBG2-overexpressing roots additionally displayed reduced levels of PD-associated callose. Together, these findings suggest an active role for MtBG2 in callose degradation and in the formation of symplastic domains during sequential nodule developmental stages. Interfering with symplastic connectivity led to drastic nodulation phenotypes. Roots ectopically expressing ß-1,3-glucanases (including MtBG2) exhibited increased nodule number, and those expressing MtBG2 RNAi constructs or a hyperactive callose synthase (under symbiotic promoters) showed defective nodulation phenotypes. Obstructing symplastic connectivity appears to block a signaling pathway required for the expression of NODULE INCEPTION (NIN) and its target NUCLEAR FACTOR-YA1 (NF-YA1) in the cortex. We conclude that symplastic intercellular communication is proactively enhanced by rhizobia, and this is necessary for appropriate coordination of bacterial infection and nodule development.


Subject(s)
Glucans/metabolism , Plasmodesmata/metabolism , Root Nodules, Plant/growth & development , Gene Expression Regulation, Plant/genetics , Glucan 1,3-beta-Glucosidase/metabolism , Glucan 1,3-beta-Glucosidase/physiology , Glucans/physiology , Intercellular Junctions/metabolism , Medicago truncatula/genetics , Medicago truncatula/metabolism , Nitrogen Fixation , Organogenesis, Plant , Plant Proteins/metabolism , Plant Roots/growth & development , Rhizobium , Root Nodules, Plant/microbiology , Signal Transduction , Symbiosis/genetics
4.
Biochim Biophys Acta Gene Regul Mech ; 1860(5): 645-654, 2017 May.
Article in English | MEDLINE | ID: mdl-27939756

ABSTRACT

NF-Ys are heterotrimeric transcription factors composed by the NF-YA, NF-YB and NF-YC subunits. In plants, NF-Y subunits are encoded by multigene families whose members show structural and functional diversifications. An increasing number of NF-Y genes has been shown to play key roles during different stages of root nodule and arbuscular mycorrhizal symbiosis, as well as during the interaction of plants with pathogenic microorganisms. Individual members of the NF-YA and NF-YB families have also been implicated in the development of primary and lateral roots. In addition, different members of the NF-YA and NF-YB gene families from mono- and di-cotyledonous plants have been involved in plant responses to water and nutrient scarcity. This review presents the most relevant and striking results concerning these NF-Y subunits. A phylogenetic analysis of the functionally characterized NF-Y genes revealed that, across plant species, NF-Y proteins functioning in the same biological process tend to belong to common phylogenetic groups. Finally, we discuss the forthcoming challenges of plant NF-Y research, including the detailed dissection of expression patterns, the elucidation of functional specificities as well as the characterization of the potential NF-Y-mediated epigenetic mechanisms by which they control the expression of their target genes. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.


Subject(s)
CCAAT-Binding Factor , Epigenesis, Genetic/physiology , Gene Expression Regulation, Plant/physiology , Mycorrhizae , Plant Proteins , Plants , CCAAT-Binding Factor/genetics , CCAAT-Binding Factor/metabolism , Mycorrhizae/genetics , Mycorrhizae/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/genetics , Plants/metabolism
5.
Plant Physiol ; 169(4): 2761-73, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26432878

ABSTRACT

The endosymbiotic association between legumes and soil bacteria called rhizobia leads to the formation of a new root-derived organ called the nodule in which differentiated bacteria convert atmospheric nitrogen into a form that can be assimilated by the host plant. Successful root infection by rhizobia and nodule organogenesis require the activation of symbiotic genes that are controlled by a set of transcription factors (TFs). We recently identified Medicago truncatula nuclear factor-YA1 (MtNF-YA1) and MtNF-YA2 as two M. truncatula TFs playing a central role during key steps of the Sinorhizobium meliloti-M. truncatula symbiotic interaction. NF-YA TFs interact with NF-YB and NF-YC subunits to regulate target genes containing the CCAAT box consensus sequence. In this study, using a yeast two-hybrid screen approach, we identified the NF-YB and NF-YC subunits able to interact with MtNF-YA1 and MtNF-YA2. In yeast (Saccharomyces cerevisiae) and in planta, we further demonstrated by both coimmunoprecipitation and bimolecular fluorescence complementation that these NF-YA, -B, and -C subunits interact and form a stable NF-Y heterotrimeric complex. Reverse genetic and chromatin immunoprecipitation-PCR approaches revealed the importance of these newly identified NF-YB and NF-YC subunits for rhizobial symbiosis and binding to the promoter of MtERN1 (for Ethylene Responsive factor required for Nodulation), a direct target gene of MtNF-YA1 and MtNF-YA2. Finally, we verified that a similar trimer is formed in planta by the common bean (Phaseolus vulgaris) NF-Y subunits, revealing the existence of evolutionary conserved NF-Y protein complexes to control nodulation in leguminous plants. This sheds light on the process whereby an ancient heterotrimeric TF mainly controlling cell division in animals has acquired specialized functions in plants.


Subject(s)
CCAAT-Binding Factor/genetics , Fabaceae/genetics , Phylogeny , Plant Proteins/genetics , Plant Root Nodulation/genetics , Transcription Factors/genetics , Amino Acid Sequence , CCAAT-Binding Factor/classification , CCAAT-Binding Factor/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cytoplasm/genetics , Cytoplasm/metabolism , Fabaceae/metabolism , Fabaceae/microbiology , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Host-Pathogen Interactions , Medicago truncatula/genetics , Medicago truncatula/microbiology , Microscopy, Confocal , Molecular Sequence Data , Phaseolus/genetics , Phaseolus/microbiology , Plant Proteins/classification , Plant Proteins/metabolism , Protein Binding , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Rhizobium/physiology , Sequence Homology, Amino Acid , Sinorhizobium meliloti/physiology , Symbiosis , Transcription Factors/classification , Transcription Factors/metabolism , Two-Hybrid System Techniques
6.
Plant Signal Behav ; 9(5): e28847, 2014.
Article in English | MEDLINE | ID: mdl-24736593

ABSTRACT

Transcription factors are DNA binding proteins that regulate gene expression. The nitrogen fixing symbiosis established between legume plants and soil bacteria is a complex interaction, in which plants need to integrate signals derived from the symbiont and the surrounding environment to initiate the developmental program of nodule organogenesis and the infection process. Several transcription factors that play critical roles in these processes have been reported in the past decade, including proteins of the GRAS and NF-Y families. Recently, we reported the characterization of a new GRAS domain containing-protein that interacts with a member of the C subunit of the NF-Y family, which plays an important role in nodule development and the progression of bacterial infection during the symbiotic interaction. The connection between transcription factors of these families highlights the significance of multimeric complexes in the fabulous capacity of plants to integrate and respond to multiple environmental stimuli.


Subject(s)
Fabaceae/microbiology , Plant Proteins/physiology , Symbiosis/physiology , Transcription Factors/physiology , CCAAT-Binding Factor/physiology , Fabaceae/physiology , Nitrogen Fixation , Plant Roots/microbiology , Plant Roots/physiology , Protein Interaction Domains and Motifs
7.
Plant Physiol ; 164(3): 1430-42, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24424321

ABSTRACT

A C subunit of the heterotrimeric nuclear factor Y (NF-YC1) was shown to play a key role in nodule organogenesis and bacterial infection during the nitrogen fixing symbiosis established between common bean (Phaseolus vulgaris) and Rhizobium etli. To identify other proteins involved in this process, we used the yeast (Saccharomyces cerevisiae) two-hybrid system to screen for NF-YC1-interacting proteins. One of the positive clones encodes a member of the Phytochrome A Signal Transduction1 subfamily of GRAS (for Gibberellic Acid-Insensitive (GAI), Repressor of GAI, and Scarecrow) transcription factors. The protein, named Scarecrow-like13 Involved in Nodulation (SIN1), localizes both to the nucleus and the cytoplasm, but in transgenic Nicotiana benthamiana cells, bimolecular fluorescence complementation suggested that the interaction with NF-YC1 takes place predominantly in the nucleus. SIN1 is expressed in aerial and root tissues, with higher levels in roots and nodules. Posttranscriptional gene silencing of SIN1 using RNA interference (RNAi) showed that the product of this gene is involved in lateral root elongation. However, root cell organization, density of lateral roots, and the length of root hairs were not affected by SIN1 RNAi. In addition, the expression of the RNAi of SIN1 led to a marked reduction in the number and size of nodules formed upon inoculation with R. etli and affected the progression of infection threads toward the nodule primordia. Expression of NF-YA1 and the G2/M transition cell cycle genes Cyclin B and Cell Division Cycle2 was reduced in SIN1 RNAi roots. These data suggest that SIN1 plays a role in lateral root elongation and the establishment of root symbiosis in common bean.


Subject(s)
CCAAT-Binding Factor/metabolism , Organogenesis , Phaseolus/microbiology , Plant Proteins/metabolism , Plant Roots/growth & development , Root Nodules, Plant/microbiology , Symbiosis , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Nucleus/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Silencing , Genes, Plant/genetics , Multigene Family , Organ Specificity/genetics , Phaseolus/growth & development , Phaseolus/metabolism , Plant Roots/anatomy & histology , Plant Roots/microbiology , Protein Binding , RNA Interference , Rhizobium/physiology , Root Nodules, Plant/metabolism , Transcription, Genetic
8.
Front Plant Sci ; 5: 761, 2014.
Article in English | MEDLINE | ID: mdl-25642232

ABSTRACT

In the past decade, plant nuclear factor Y (NF-Y) genes have gained major interest due to their roles in many biological processes in plant development or adaptation to environmental conditions, particularly in the root nodule symbiosis established between legume plants and nitrogen fixing bacteria. NF-Ys are heterotrimeric transcriptional complexes composed of three subunits, NF-YA, NF-YB, and NF-YC, which bind with high affinity and specificity to the CCAAT box, a cis element present in many eukaryotic promoters. In plants, NF-Y subunits consist of gene families with about 10 members each. In this study, we have identified and characterized the NF-Y gene families of common bean (Phaseolus vulgaris), a grain legume of worldwide economical importance and the main source of dietary protein of developing countries. Expression analysis showed that some members of each family are up-regulated at early or late stages of the nitrogen fixing symbiotic interaction with its partner Rhizobium etli. We also showed that some genes are differentially accumulated in response to inoculation with high or less efficient R. etli strains, constituting excellent candidates to participate in the strain-specific response during symbiosis. Genes of the NF-YA family exhibit a highly structured intron-exon organization. Moreover, this family is characterized by the presence of upstream ORFs when introns in the 5' UTR are retained and miRNA target sites in their 3' UTR, suggesting that these genes might be subjected to a complex post-transcriptional regulation. Multiple protein alignments indicated the presence of highly conserved domains in each of the NF-Y families, presumably involved in subunit interactions and DNA binding. The analysis presented here constitutes a starting point to understand the regulation and biological function of individual members of the NF-Y families in different developmental processes in this grain legume.

9.
Plant Physiol Biochem ; 68: 81-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23644278

ABSTRACT

Flavonoids and isoflavonoids participate in the signaling exchange between roots of legumes and nitrogen-fixing rhizobia and can promote division of cortical cells during nodule formation by inhibiting auxin transport. Here, we report the characterization of a member of the common bean isoflavone reductase (EC 1.3.1.45, PvIFR1) gene family, an enzyme that participates in the last steps of the biosynthetic pathway of isoflavonoids. Transcript levels of PvIFR1 were detected preferentially in the susceptible zone of roots, augmented upon nitrogen starvation and in response to Rhizobium etli inoculation at very early stages of the interaction. Knockdown of PvIFR1 mediated by RNA interference (RNAi) in common bean composite plants resulted in a reduction of shoot and root length. Furthermore, reduction of PvIFR1 mRNAs also affected growth of lateral roots after emergence, a stage in which auxins are required to establish a persistent meristem. Upon inoculation, the number of nodules formed by different strains of R. etli was significantly lower in IFR RNAi than in control roots. Transcript levels of two auxin-regulated genes are consistent with lower levels of auxin in PvIFR1 silenced roots. These results suggest a complex role of PvIFR1 during plant growth, root development and symbiosis, all processes in which auxin transport is involved.


Subject(s)
Oxidoreductases Acting on CH-CH Group Donors/genetics , Phaseolus/physiology , Root Nodules, Plant/growth & development , Root Nodules, Plant/genetics , Root Nodules, Plant/microbiology , Amino Acid Sequence , Gene Expression Regulation, Plant , Gene Knockdown Techniques , Indoleacetic Acids/metabolism , Molecular Sequence Data , Multigene Family , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Phaseolus/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Shoots/genetics , Plant Shoots/growth & development , Plants, Genetically Modified , RNA Interference , Rhizobium etli/physiology , Symbiosis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...