Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Eur J Public Health ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905592

ABSTRACT

BACKGROUND: Somatic and germline genetic alterations are significant drivers of cancer. Increasing integration of new technologies which profile these alterations requires timely, equitable and high-quality genetic counselling to facilitate accurate diagnoses and informed decision-making by patients and their families in preventive and clinical settings. This article aims to provide an overview of genetic counselling legislation and practice across European Union (EU) Member States to serve as a foundation for future European recommendations and action. METHODS: National legislative databases of all 27 Member States were searched using terms relevant to genetic counselling, translated as appropriate. Interviews with relevant experts from each Member State were conducted to validate legislative search results and provide detailed insights into genetic counselling practice in each country. RESULTS: Genetic counselling is included in national legislative documents of 22 of 27 Member States, with substantial variation in legal mechanisms and prescribed details (i.e. the 'who, what, when and where' of counselling). Practice is similarly varied. Workforce capacity (25 of 27 Member States) and genetic literacy (all Member States) were common reported barriers. Recognition and/or better integration of genetic counsellors and updated legislation and were most commonly noted as the 'most important change' which would improve practice. CONCLUSIONS: This review highlights substantial variability in genetic counselling across EU Member States, as well as common barriers notwithstanding this variation. Future recommendations and action should focus on addressing literacy and capacity challenges through legislative, regulatory and/or strategic approaches at EU, national, regional and/or local levels.

4.
Blood Adv ; 7(20): 6092-6107, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37406166

ABSTRACT

Individuals with germ line variants associated with hereditary hematopoietic malignancies (HHMs) have a highly variable risk for leukemogenesis. Gaps in our understanding of premalignant states in HHMs have hampered efforts to design effective clinical surveillance programs, provide personalized preemptive treatments, and inform appropriate counseling for patients. We used the largest known comparative international cohort of germline RUNX1, GATA2, or DDX41 variant carriers without and with hematopoietic malignancies (HMs) to identify patterns of genetic drivers that are unique to each HHM syndrome before and after leukemogenesis. These patterns included striking heterogeneity in rates of early-onset clonal hematopoiesis (CH), with a high prevalence of CH in RUNX1 and GATA2 variant carriers who did not have malignancies (carriers-without HM). We observed a paucity of CH in DDX41 carriers-without HM. In RUNX1 carriers-without HM with CH, we detected variants in TET2, PHF6, and, most frequently, BCOR. These genes were recurrently mutated in RUNX1-driven malignancies, suggesting CH is a direct precursor to malignancy in RUNX1-driven HHMs. Leukemogenesis in RUNX1 and DDX41 carriers was often driven by second hits in RUNX1 and DDX41, respectively. This study may inform the development of HHM-specific clinical trials and gene-specific approaches to clinical monitoring. For example, trials investigating the potential benefits of monitoring DDX41 carriers-without HM for low-frequency second hits in DDX41 may now be beneficial. Similarly, trials monitoring carriers-without HM with RUNX1 germ line variants for the acquisition of somatic variants in BCOR, PHF6, and TET2 and second hits in RUNX1 are warranted.


Subject(s)
Hematologic Neoplasms , Leukemia , Humans , Core Binding Factor Alpha 2 Subunit/genetics , Hematologic Neoplasms/genetics , Germ-Line Mutation , DEAD-box RNA Helicases/genetics , Carcinogenesis , Germ Cells , GATA2 Transcription Factor/genetics
5.
Breast Care (Basel) ; 18(2): 106-112, 2023 May.
Article in English | MEDLINE | ID: mdl-37261134

ABSTRACT

Introduction: International guidelines recommend genetic testing for women with familial breast cancer at an expected prevalence of pathogenic germline variants (PVs) of at least 10%. In a study sample of the German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC), we have previously shown that women with TNBC diagnosed before the age of 50 years but without a family history of breast or ovarian cancer (sTNBC) meet this criterion. The present study investigates the PV prevalence in BRCA1, BRCA2, and nine additional cancer predisposition genes in an extended sTNBC study sample including a cohort of women with a later age at sTNBC diagnosis. Patients and Methods: In 1,600 women with sTNBC (median age at diagnosis: 41 years, range 19-78 years), we investigated the association between age at diagnosis and PV occurrence in cancer predisposition genes using logistic regression. Results: 260 sTNBC patients (16.2%) were found to have a PV in cancer predisposition genes (BRCA1: n = 170 [10.6%]; BRCA2: n = 46 [2.9%], other: n = 44 [2.8%]). The PV prevalence in women diagnosed between 50 and 59 years (n = 194) was 11.3% (22/194). Logistic regression showed a significant increase in PV prevalence with decreasing age at diagnosis (OR 1.41 per 10 years younger age at diagnosis; 95% confidence interval: 1.21-1.65; p < 0.001). The PV prevalence predicted by the model was above 10% for diagnoses before the age of 56.8 years. Conclusion: Based on the data presented, we recommend genetic testing by gene panel analysis for sTNBC patients diagnosed before the age of 60 years. Due to the still uncertain estimate for women with sTNBC diagnosed above the age of 60 years, further studies are needed.

7.
Pediatr Blood Cancer ; 70(5): e30229, 2023 05.
Article in English | MEDLINE | ID: mdl-36860090

ABSTRACT

The European Union-funded COST Action (LEukaemia GENe Discovery by data sharing, mining, and collaboration) LEGEND was an international and multidisciplinary collaboration between clinicians and researchers that covered a range of aspects of genetic predisposition in childhood leukemia. Within this framework, we explored the perception and handling of genetic predisposition in the daily practice of European treatment centers. Herein, we present the results of our questionnaire-based survey. We found that the overall awareness is quite high, and respondents remarked that identification and treatment of the most common predisposition syndromes were present. Nevertheless, high demand for continuous education and routinely updated resources remains.


Subject(s)
Genetic Predisposition to Disease , Neoplasms , Child , Humans , Neoplasms/genetics , Neoplasms/therapy , Surveys and Questionnaires , Syndrome , Perception
8.
Eur J Med Genet ; 66(4): 104727, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36775010

ABSTRACT

Although hematologic malignancies (HM) are no longer considered exclusively sporadic, additional awareness of familial cases has yet to be created. Individuals carrying a (likely) pathogenic germline variant (e.g., in ETV6, GATA2, SAMD9, SAMD9L, or RUNX1) are at an increased risk for developing HM. Given the clinical and psychological impact associated with the diagnosis of a genetic predisposition to HM, it is of utmost importance to provide high-quality, standardized patient care. To address these issues and harmonize care across Europe, the Familial Leukemia Subnetwork within the ERN PaedCan has been assigned to draft an European Standard Clinical Practice (ESCP) document reflecting current best practices for pediatric patients and (healthy) relatives with (suspected) familial leukemia. The group was supported by members of the German network for rare diseases MyPred, of the Host Genome Working Group of SIOPE, and of the COST action LEGEND. The ESCP on familial leukemia is proposed by an interdisciplinary team of experts including hematologists, oncologists, and human geneticists. It is intended to provide general recommendations in areas where disease-specific recommendations do not yet exist. Here, we describe key issues for the medical care of familial leukemia that shall pave the way for a future consensus guideline: (i) identification of individuals with or suggestive of familial leukemia, (ii) genetic analysis and variant interpretation, (iii) genetic counseling and patient education, and (iv) surveillance and (psychological) support. To address the question on how to proceed with individuals suggestive of or at risk of familial leukemia, we developed an algorithm covering four different, partially linked clinical scenarios, and additionally a decision tree to guide clinicians in their considerations regarding familial leukemia in minors with HM. Our recommendations cover, not only patients but also relatives that both should have access to adequate medical care. We illustrate the importance of natural history studies and the need for respective registries for future evidence-based recommendations that shall be updated as new evidence-based standards are established.


Subject(s)
Genetic Predisposition to Disease , Leukemia , Humans , Child , Genetic Counseling , Germ-Line Mutation , Transcription Factors , Intracellular Signaling Peptides and Proteins
9.
Eur J Med Genet ; 66(5): 104718, 2023 May.
Article in English | MEDLINE | ID: mdl-36764384

ABSTRACT

Soft tissue sarcomas (STS) may arise as a consequence of germline variants in cancer predisposition genes (CPGs). We believe that elucidating germline sarcoma predisposition is critical for understanding disease biology and therapeutic requirements. Participation in surveillance programs may allow for early tumor detection, early initiation of therapy and, ultimately, better outcomes. Among children, adolescents, and adults diagnosed with soft-tissue sarcomas and examined as part of published germline sequencing studies, pathogenic/likely pathogenic (P/LP) variants in CPGs were reported in 7-33% of patients. P/LP germline variants were detected most frequently in TP53, NF1 and BRCA1/2. In this review, we describe reported associations between soft tissue sarcomas and germline variants in CPGs, with mentioning of locally aggressive and benign soft tissue tumors that have important associations with cancer predisposition syndromes. We also discuss recommendations for diagnostic germline genetic testing. Testing for sarcoma-predisposing germline variants should be considered as part of the routine clinical workup and care of any child, adolescent, or adult diagnosed with STS and take into account consequences for the whole family.


Subject(s)
Sarcoma , Soft Tissue Neoplasms , Humans , Child , Adolescent , Young Adult , Genetic Predisposition to Disease , Sarcoma/diagnosis , Sarcoma/genetics , Germ-Line Mutation , Genetic Testing , Soft Tissue Neoplasms/genetics
10.
Gastroenterology ; 164(4): 579-592.e8, 2023 04.
Article in English | MEDLINE | ID: mdl-36586540

ABSTRACT

BACKGROUND & AIMS: Constitutional mismatch repair deficiency (CMMRD) is a rare recessive childhood cancer predisposition syndrome caused by germline mismatch repair variants. Constitutional microsatellite instability (cMSI) is a CMMRD diagnostic hallmark and may associate with cancer risk. We quantified cMSI in a large CMMRD patient cohort to explore genotype-phenotype correlations using novel MSI markers selected for instability in blood. METHODS: Three CMMRD, 1 Lynch syndrome, and 2 control blood samples were genome sequenced to >120× depth. A pilot cohort of 8 CMMRD and 38 control blood samples and a blinded cohort of 56 CMMRD, 8 suspected CMMRD, 40 Lynch syndrome, and 43 control blood samples were amplicon sequenced to 5000× depth. Sample cMSI score was calculated using a published method comparing microsatellite reference allele frequencies with 80 controls. RESULTS: Thirty-two mononucleotide repeats were selected from blood genome and pilot amplicon sequencing data. cMSI scoring using these MSI markers achieved 100% sensitivity (95% CI, 93.6%-100.0%) and specificity (95% CI 97.9%-100.0%), was reproducible, and was superior to an established tumor MSI marker panel. Lower cMSI scores were found in patients with CMMRD with MSH6 deficiency and patients with at least 1 mismatch repair missense variant, and patients with biallelic truncating/copy number variants had higher scores. cMSI score did not correlate with age at first tumor. CONCLUSIONS: We present an inexpensive and scalable cMSI assay that enhances CMMRD detection relative to existing methods. cMSI score is associated with mismatch repair genotype but not phenotype, suggesting it is not a useful predictor of cancer risk.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Neoplastic Syndromes, Hereditary , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Microsatellite Instability , Neoplastic Syndromes, Hereditary/diagnosis , Neoplastic Syndromes, Hereditary/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Brain Neoplasms/diagnosis , Genotype , DNA Mismatch Repair/genetics , Mismatch Repair Endonuclease PMS2/genetics
12.
Radiologie (Heidelb) ; 62(12): 1012-1016, 2022 Dec.
Article in German | MEDLINE | ID: mdl-36416927

ABSTRACT

BACKGROUND: Most malignant diseases develop sporadically. However, a significant proportion of cancers are based on genetic predispositions. In this case, cancer develops as a result of causal germline variants. In general, the associated diseases are called genetic tumor risk syndromes or cancer predisposition syndromes. Recognition of these syndromes is in the interest of those affected, as well as of their relatives, as this may have influence on immediate therapy or aftercare. In the course, risk-adapted surveillance or risk-reducing operations may be indicated. CLINICAL IMPACT: Taking into account four signs (i.e., past medical history, characteristic tumors or suspicious age of onset, somatic alterations of the tumors, and family history), radiologists can contribute to the identification of patients with cancer predisposition. Besides appraisal of screening images, the expertise of radiologists is especially needed to develop and reevaluate risk-adapted surveillance programs.


Subject(s)
Neoplasms , Radiologists , Humans , Syndrome , Neoplasms/diagnosis , Genetic Predisposition to Disease/genetics , Human Genetics
14.
J Natl Cancer Inst ; 114(11): 1523-1532, 2022 11 14.
Article in English | MEDLINE | ID: mdl-35980168

ABSTRACT

BACKGROUND: Genetic predisposition is has been identified as a cause of cancer, yet little is known about the role of adult cancer predisposition syndromes in childhood cancer. We examined the extent to which heterozygous pathogenic germline variants in BRCA1, BRCA2, PALB2, ATM, CHEK2, MSH2, MSH6, MLH1, and PMS2 contribute to cancer risk in children and adolescents. METHODS: We conducted a meta-analysis of 11 studies that incorporated comprehensive germline testing for children and adolescents with cancer. ClinVar pathogenic or likely pathogenic variants (PVs) in genes of interest were compared with 2 control groups. Results were validated in a cohort of mainly European patients and controls. We employed the Proxy External Controls Association Test to account for different pipelines. RESULTS: Among 3975 children and adolescents with cancer, statistically significant associations with cancer risk were observed for PVs in BRCA1 and 2 (26 PVs vs 63 PVs among 27 501 controls, odds ratio = 2.78, 95% confidence interval = 1.69 to 4.45; P < .001) and mismatch repair genes (19 PVs vs 14 PVs among 27 501 controls, odds ratio = 7.33, 95% confidence interval = 3.64 to 14.82; P <.001). Associations were seen in brain and other solid tumors but not in hematologic neoplasms. We confirmed similar findings in 1664 pediatric cancer patients primarily of European descent. CONCLUSION: These data suggest that heterozygous PVs in BRCA1 and 2 and mismatch repair genes contribute with reduced penetrance to cancer risk in children and adolescents. No changes to predictive genetic testing and surveillance recommendations are required.


Subject(s)
Breast Neoplasms , Neoplasms , Adult , Child , Humans , Adolescent , Female , DNA Mismatch Repair/genetics , Germ-Line Mutation , BRCA1 Protein/genetics , Genes, BRCA2 , Genetic Predisposition to Disease , Neoplasms/genetics , Breast Neoplasms/genetics , BRCA2 Protein/genetics
15.
Cancers (Basel) ; 14(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35884491

ABSTRACT

Pathogenic loss-of-function RUNX1 germline variants cause autosomal dominantly-inherited familial platelet disorder with predisposition to hematologic malignancies (RUNX1-FPD). RUNX1-FPD is characterized by incomplete penetrance and a broad spectrum of clinical phenotypes, even within affected families. Heterozygous RUNX1 germline variants set the basis for leukemogenesis, but, on their own, they are not transformation-sufficient. Somatically acquired secondary events targeting RUNX1 and/or other hematologic malignancy-associated genes finally lead to MDS, AML, and rarely other hematologic malignancies including lymphoid diseases. The acquisition of different somatic variants is a possible explanation for the variable penetrance and clinical heterogeneity seen in RUNX1-FPD. However, individual effects of secondary variants are not yet fully understood. Here, we review 91 cases of RUNX1-FPD patients who predominantly harbor somatic variants in genes such as RUNX1, TET2, ASXL1, BCOR, PHF6, SRSF2, NRAS, and DNMT3A. These cases illustrate the importance of secondary events in the development and progression of RUNX1-FPD-associated hematologic malignancies. The leukemia-driving interplay of predisposing germline variants and acquired variants remain to be elucidated to better understand clonal evolution and malignant transformation and finally allow risk-adapted surveillance and targeted therapeutic measures to prevent leukemia.

16.
Blood Adv ; 6(11): 3195-3200, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35026845

ABSTRACT

Familial platelet disorder with associated myeloid malignancies (RUNX1-familial platelet disorder [RUNX1-FPD]) is caused by heterozygous pathogenic germline variants of RUNX1. In the present study, we evaluate the applicability of transactivation assays to investigate RUNX1 variants in different regions of the protein. We studied 11 variants to independently validate transactivation assays supporting variant classification following the ClinGen Myeloid Malignancies Variant Curation Expert Panel guidelines. Variant classification is key for the translation of genetic findings. We showed that new assays need to be developed to assess C-terminal RUNX1 variants. Two variants of uncertain significance (VUS) were reclassified to likely pathogenic. Additionally, our analyses supported the (likely) pathogenic classification of 2 other variants. We demonstrated functionality of 4 VUS, but reclassification to (likely) benign was challenging and suggested the need for reevaluating current classification guidelines. Finally, clinical utility of our assays was illustrated in the context of 7 families. Our data confirmed RUNX1-FPD suspicion in 3 families with RUNX1-FPD-specific family history, whereas for 3 variants identified in RUNX1-FPD-nonspecific families, no functional defect was detected. Applying functional assays to support RUNX1 variant classification can be essential for adequate care of index patients and their relatives at risk. It facilitates translation of genetic data into personalized medicine.


Subject(s)
Blood Platelet Disorders , Leukemia, Myeloid, Acute , Blood Platelet Disorders/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Germ Cells , Humans , Leukemia, Myeloid, Acute/genetics , Transcriptional Activation
17.
Aktuelle Urol ; 53(5): 416-422, 2022 09.
Article in German | MEDLINE | ID: mdl-34670316

ABSTRACT

BACKGROUND: In recent years great improvements in the diagnosis and differentiation of hereditary syndroms with predisposition for kidney cancer have been achieved. It has been assumed that 5-8% of all kidney cancer have a hereditary origin. In reality, this number will probably be much higher as many genetic aspects of kidney cancer are still not entirely known. Hereditary kidney cancer usually shows two characteristic properties: While the median age of diagnosis of sporadic renal cell carcinoma is 64 years, patients with a hereditary tumor predisposition are about 20 years younger at the time of diagnosis. Additionally, their tumors often occur multifocal/bilateral. Therefore, a special management with extended diagnostics is necessary for these young kidney cancer patients. In literature many reports on hereditary syndromes with kidney cancer predisposition exist. Though, these papers usually put their focus on single syndromes rather than on the aspects of kidney cancer. The goal of this article is to present the practicing urologist with a compact overview of the most important hereditary syndromes with kidney cancer predisposition and by this improve the primary diagnostic and treatment of renal cancer patients and their relatives. MATERIAL/METHODS: We conducted a literature search on the five most important hereditary syndromes with kidney cancer association and summarized the results in a chart. Additionally, we formed the acronym ToSCaNA combining the most important extrarenal manifestations of the syndromes. Based on this data, a diagnostic workflow and treatment path was established. RESULTS: All in all, hereditary kidney cancer is a rare entity, which nonetheless could present as a significant number in high-volume centers. For doctors who scarcely get in contact with these types of tumors, the acronym and workflow could pose a valuable asset for their clinical diagnostic portfolio. An early identification and diagnostic work-up of affected patients and their relatives is crucial for appropriate treatment and surveillance and allows the identification/treatment of additionally affected relatives. CONCLUSION: In patients with young age of onset and multifocal/bilateral occurrence of kidney cancer, hereditary syndromes should always be considered. The initial suspicion of a hereditary genesis of the cancer can be further evaluated by the acronym ToSCaNA and the presented workflow.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Neoplastic Syndromes, Hereditary , Carcinoma, Renal Cell/diagnosis , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Genetic Predisposition to Disease/genetics , Humans , Kidney Neoplasms/diagnosis , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Middle Aged , Neoplastic Syndromes, Hereditary/diagnosis , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/pathology
19.
Front Oncol ; 11: 627217, 2021.
Article in English | MEDLINE | ID: mdl-33898308

ABSTRACT

Individuals carrying a pathogenic germline variant in the breast cancer predisposition gene BRCA1 (gBRCA1+) are prone to developing breast cancer. Apart from its well-known role in DNA repair, BRCA1 has been shown to powerfully impact cellular metabolism. While, in general, metabolic reprogramming was named a hallmark of cancer, disrupted metabolism has also been suggested to drive cancer cell evolution and malignant transformation by critically altering microenvironmental tissue integrity. Systemic metabolic effects induced by germline variants in cancer predisposition genes have been demonstrated before. Whether or not systemic metabolic alterations exist in gBRCA1+ individuals independent of cancer incidence has not been investigated yet. We therefore profiled the plasma metabolome of 72 gBRCA1+ women and 72 age-matched female controls, none of whom (carriers and non-carriers) had a prior cancer diagnosis and all of whom were cancer-free during the follow-up period. We detected one single metabolite, pyruvate, and two metabolite ratios involving pyruvate, lactate, and a metabolite of yet unknown structure, significantly altered between the two cohorts. A machine learning signature of metabolite ratios was able to correctly distinguish between gBRCA1+ and controls in ~82%. The results of this study point to innate systemic metabolic differences in gBRCA1+ women independent of cancer incidence and raise the question as to whether or not constitutional alterations in energy metabolism may be involved in the etiology of BRCA1-associated breast cancer.

20.
Cell Stem Cell ; 28(5): 906-922.e6, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33894142

ABSTRACT

Severe congenital neutropenia (CN) is a pre-leukemic bone marrow failure syndrome that can evolve to acute myeloid leukemia (AML). Mutations in CSF3R and RUNX1 are frequently observed in CN patients, although how they drive the transition from CN to AML (CN/AML) is unclear. Here we establish a model of stepwise leukemogenesis in CN/AML using CRISPR-Cas9 gene editing of CN patient-derived iPSCs. We identified BAALC upregulation and resultant phosphorylation of MK2a as a key leukemogenic event. BAALC deletion or treatment with CMPD1, a selective inhibitor of MK2a phosphorylation, blocked proliferation and induced differentiation of primary CN/AML blasts and CN/AML iPSC-derived hematopoietic stem and progenitor cells (HSPCs) without affecting healthy donor or CN iPSC-derived HSPCs. Beyond detailing a useful method for future investigation of stepwise leukemogenesis, this study suggests that targeting BAALC and/or MK2a phosphorylation may prevent leukemogenic transformation or eliminate AML blasts in CN/AML and RUNX1 mutant BAALC(hi) de novo AML.


Subject(s)
Induced Pluripotent Stem Cells , Leukemia, Myeloid, Acute , Neoplasm Proteins , Neutropenia , Congenital Bone Marrow Failure Syndromes , Humans , Leukemia, Myeloid, Acute/genetics , Mutation/genetics , Neoplasm Proteins/genetics , Neutropenia/congenital , Neutropenia/genetics , Oncogenes
SELECTION OF CITATIONS
SEARCH DETAIL
...