Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(41): 36117-36136, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36278099

ABSTRACT

This review deals with liquid foams stabilized by polyelectrolyte/surfactant (PS) complexes in aqueous solution. It briefly reviews all the important aspects of foam physics at several scales, from interfaces to macroscopic foams, needed to understand the basics of these complex systems, focusing on those particular aspects of foams stabilized by PS mixtures. The final section includes a few examples of smart foams based on PS complexes that have been reported recently in the literature. These PS complexes open an opportunity to develop new intelligent dispersed materials with potential in many fields, such as oil industry, environmental remediation, and pharmaceutical industry, among others. However, there is much work to be done to understand the mechanism involved in the stabilization of foams with PS complexes. Understanding those underlying mechanisms is vital to successfully formulate smart systems. This review is written in the hope of stimulating further work in the physics of PS foams and, particularly, in the search for responsive foams based on polymer-surfactant mixtures.

2.
Phys Chem Chem Phys ; 24(3): 1692-1701, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34982075

ABSTRACT

In the synthesis of metallic nanoparticles in microemulsions, we hypothesized that the particle size is controlled by the reaction rate and not by the microemulsion size. Thus, the changes observed in the particle sizes as reaction conditions, such as concentrations, temperatures, the type of surfactant used, etc., are varied which should not be correlated directly to the modification of these conditions but indirectly to the changes they produce in the reaction rates. In this work, the microemulsions were formulated with benzene and water as continuous and dispersed phases, respectively, using n-dodecyltrimethylammonium bromide (DTAB) and n-octanol as the surfactant and cosurfactant. Using time-resolved UV-vis spectroscopy, we measured the reaction rates in the production of palladium (Pd) nanoparticles inside the microemulsions at different reactant concentrations and temperatures, keeping all the other parameters constant. The measured reaction rates were then correlated with the particle sizes measured by transmission electron microscopy (TEM). We found that the nanoparticle size increases linearly as the reaction rate increases, independently of the actual reactant concentration or temperature. We proposed a simple model for the observed kinetics where the reaction rate is controlled mainly by the diffusion of the reducing agent. With this model, we predicted that the particle size should depend indirectly, via the reaction kinetics, on the micelle radius, the water volume and the total microemulsion volume. Some of these predictions were indeed observed and reported in the literature.

3.
Soft Matter ; 17(8): 2279-2289, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33475128

ABSTRACT

A dispersion of elongated nanostructures with a high aspect ratio in polymer matrices has been reported to provide a material with valuable properties such as mechanical strength, barrier effect and shape memory, among others. In this study, we show the procedure to achieve a distribution of elongated crystalline nanodomains in a PS matrix employing the self-assembly of amphiphilic block copolymers (BCP). The selected BCP was polystyrene-block-polyethylene oxide (PS-b-PEO). It was dissolved at 10 wt% in a styrene (St) monomer and the blend was slowly photopolymerized over four days at room temperature, until the reaction was arrested by vitrification. This blend was initially homogeneous and nanostructuration took place in an early stage of the polymerization as a result of the microphase separation (MS) of PEO blocks. Due to its high tendency to crystallize, demixed PEO blocks crystallized almost concomitantly with MS triggering the growing of the nanostructures. Thus, the time window between the onset of crystallization and the vitrification of the matrix was almost four days, allowing all micelles to have the opportunity to couple to a growing nanostructure. As a result, a population of nanoribbons with average lengths surpassing 10 µm dispersed in a PS matrix was obtained. It was demonstrated that these ribbon-like nanostructures are preserved as long as the heating temperature is located below the Tg of the matrix. If the material is heated above this temperature, softening of the matrix allows the breakup of the molten PEO nanoribbons due to Plateau-Rayleigh instability.

4.
Langmuir ; 36(50): 15386-15395, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33284632

ABSTRACT

Avalanches of rupturing bubbles play an important role in the dynamics of collapse of macroscopic liquid foams. We hypothesized that the occurrence of cascades of rupturing bubbles in foams depends, at least in part, on the power released during the rupture of a bubble. In this paper, we present results on the dynamics of single bubble bursting obtained by analyzing the pressure wave (sound) emitted by the bubble when collapsing. We found that the released energy varies linearly with bubble size, the frequency of the emitted sound follows a power law with exponent 3/2 (compatible with the Helmholtz resonator model) and the duration of a rupturing event seems to be independent of bubble size. To correlate the dynamics of individual bubbles with the dynamics of foams, we studied the occurrence of avalanches on bubble rafts and found that the phenomenon appears to be a self-organized criticality (SOC) process. The distribution functions for the size of the avalanches are a power law with exponents between 2 and 3, depending on the surfactant concentration. The distribution of times between ruptures also follows a power law with exponents close to 1, independently of the surfactant concentration.

5.
Adv Colloid Interface Sci ; 285: 102282, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33059304

ABSTRACT

This short review deals with the work done on liquid foams within the framework of the physics of complexity. It aims to stimulate new theoretical and experimental work on foam dynamics as complex dynamical systems. In particular, it examines these systems in relation to Self-Organized Criticality (SOC), for which foams could be used as an accessible experimental model system.

6.
J Colloid Interface Sci ; 512: 455-465, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29096106

ABSTRACT

HYPOTHESIS: Previous efforts to formulate smart foams composed of mixtures of PNIPAAm, a thermoresponsive uncharged polymer, and surfactants have failed because the surfactant displaces the PNIPAAm from the liquid-air interface, removing the thermal responsiveness. We hypothesized that thermoresponsive foams could be formulated with such a mixture if a charged surfactant were used in order to anchor an oppositely charged brush-type polyelectrolyte, for which PNIPAAm could be incorporated as side chains, to the interface. EXPERIMENTS: A brush-type negatively charged co-polyelectrolyte (Cop-L) with PNIPAAm as side chains was synthetized. Its mixtures with DTAB, a cationic surfactant, in aqueous solution were characterized by dynamic light scattering, surface tension and surface compression viscoelasticity measurements, as a function of both surfactant concentration and temperature. The foam stability and its responsiveness to temperature changes were studied with a homemade apparatus. FINDINGS: The Cop-L/DTAB mixtures were capable of producing thermoresponsive foams but only in a very narrow surfactant concentration (cs) range, 0.3 < cs< 1.6 mM. The responsiveness is due to a modification of the interfacial compression elasticity induced by conformational changes of the Polyeletrolyte/surfactant aggregates at the interface. This is possible only for cs < 1.6 because higher surfactant concentrations induce the polymer collapse at all temperatures, eliminating the thermal responsiveness.

7.
Adv Colloid Interface Sci ; 247: 234-257, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28552423

ABSTRACT

In this review I highlight a very sensitive experimental technique for the study of polymer-surfactant complexation: The electro-optic Kerr effect. This review does not intend to be exhaustive in covering the Kerr Effect nor polymer-surfactant systems, instead it aims to call attention to an experimental technique that, even if applied in a qualitative manner, could give very rich and unique information about the structures and aggregation processes occurring in mixtures of oppositely charged colloids. The usefulness of electric birefringence experiments in the study of such systems is illustrated by selected results from literature in hope of stimulating the realization of more birefringence experiments on similar systems. This review is mainly aimed at, but not restricted to, researchers working in polyelectrolyte-surfactant mixtures in aqueous solutions, Kerr effect is a powerful experimental tool that could be used in the study of many systems in diverse areas of colloidal physics.

8.
Langmuir ; 20(9): 3648-56, 2004 Apr 27.
Article in English | MEDLINE | ID: mdl-15875395

ABSTRACT

The molecular reorientation model of Fainerman et al. is conceptually adapted to explain the dynamic surface tension behavior in polyelectrolyte/surfactant systems with opposite charges. The equilibrium surface tension curves and the adsorption dynamics may be explained by assuming that there are two different states for surfactant molecules at the interface. One of these states corresponds to the adsorption of the surfactant as monomers, and the other to the formation of a mixed complex at the surface. The model also explains the plateaus that appear in the dynamic surface tension curves and gives a picture of the adsorption process.

SELECTION OF CITATIONS
SEARCH DETAIL
...