Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
PLoS Comput Biol ; 17(8): e1008844, 2021 08.
Article in English | MEDLINE | ID: mdl-34370723

ABSTRACT

Many biological processes are mediated by protein-protein interactions (PPIs). Because protein domains are the building blocks of proteins, PPIs likely rely on domain-domain interactions (DDIs). Several attempts exist to infer DDIs from PPI networks but the produced datasets are heterogeneous and sometimes not accessible, while the PPI interactome data keeps growing. We describe a new computational approach called "PPIDM" (Protein-Protein Interactions Domain Miner) for inferring DDIs using multiple sources of PPIs. The approach is an extension of our previously described "CODAC" (Computational Discovery of Direct Associations using Common neighbors) method for inferring new edges in a tripartite graph. The PPIDM method has been applied to seven widely used PPI resources, using as "Gold-Standard" a set of DDIs extracted from 3D structural databases. Overall, PPIDM has produced a dataset of 84,552 non-redundant DDIs. Statistical significance (p-value) is calculated for each source of PPI and used to classify the PPIDM DDIs in Gold (9,175 DDIs), Silver (24,934 DDIs) and Bronze (50,443 DDIs) categories. Dataset comparison reveals that PPIDM has inferred from the 2017 releases of PPI sources about 46% of the DDIs present in the 2020 release of the 3did database, not counting the DDIs present in the Gold-Standard. The PPIDM dataset contains 10,229 DDIs that are consistent with more than 13,300 PPIs extracted from the IMEx database, and nearly 23,300 DDIs (27.5%) that are consistent with more than 214,000 human PPIs extracted from the STRING database. Examples of newly inferred DDIs covering more than 10 PPIs in the IMEx database are provided. Further exploitation of the PPIDM DDI reservoir includes the inventory of possible partners of a protein of interest and characterization of protein interactions at the domain level in combination with other methods. The result is publicly available at http://ppidm.loria.fr/.


Subject(s)
Protein Interaction Domains and Motifs , Protein Interaction Mapping/statistics & numerical data , Protein Interaction Maps , Algorithms , Computational Biology , Data Mining/statistics & numerical data , Databases, Protein/statistics & numerical data , Humans , Software
2.
Proteins ; 88(8): 1121-1128, 2020 08.
Article in English | MEDLINE | ID: mdl-32506478

ABSTRACT

Protein docking algorithms aim to predict the 3D structure of a protein complex from the structures of its separated components. In the past, most docking algorithms focused on docking pairs of proteins to form dimeric complexes. However, attention is now turning towards the more difficult problem of using docking methods to predict the structures of multicomponent complexes. In both cases, however, the constituent proteins often change conformation upon complex formation, and this can cause many algorithms to fail to detect near-native binding orientations due to the high number of atomic steric clashes in the list of candidate solutions. An increasingly popular way to retain more near-native orientations is to define one or more restraints that serve to modulate or override the effect of steric clashes. Here, we present an updated version of our "EROS-DOCK" docking algorithm which has been extended to dock arbitrary dimeric and trimeric complexes, and to allow the user to define residue-residue or atom-atom interaction restraints. Our results show that using even just one residue-residue restraint in each interaction interface is sufficient to increase the number of cases with acceptable solutions within the top 10 from 51 to 121 out of 173 pairwise docking cases, and to successfully dock 8 out of 11 trimeric complexes.


Subject(s)
Algorithms , Molecular Docking Simulation , Peptides/chemistry , Proteins/chemistry , Software , Amino Acid Sequence , Binding Sites , Humans , Ligands , Peptides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Protein Multimerization , Proteins/metabolism , Research Design , Structural Homology, Protein , Thermodynamics
3.
4.
Mob DNA ; 10: 18, 2019.
Article in English | MEDLINE | ID: mdl-31073337

ABSTRACT

BACKGROUND: Conjugative spread of antibiotic resistance and virulence genes in bacteria constitutes an important threat to public health. Beyond the well-known conjugative plasmids, recent genome analyses have shown that integrative and conjugative elements (ICEs) are the most widespread conjugative elements, even if their transfer mechanism has been little studied until now. The initiator of conjugation is the relaxase, a protein catalyzing a site-specific nick on the origin of transfer (oriT) of the ICE. Besides canonical relaxases, recent studies revealed non-canonical ones, such as relaxases of the MOBT family that are related to rolling-circle replication proteins of the Rep_trans family. MOBT relaxases are encoded by ICEs of the ICESt3/ICEBs1/Tn916 superfamily, a superfamily widespread in Firmicutes, and frequently conferring antibiotic resistance. RESULTS: Here, we present the first biochemical and structural characterization of a MOBT relaxase: the RelSt3 relaxase encoded by ICESt3 from Streptococcus thermophilus. We identified the oriT region of ICESt3 and demonstrated that RelSt3 is required for its conjugative transfer. The purified RelSt3 protein is a stable dimer that provides a Mn2+-dependent single-stranded endonuclease activity. Sequence comparisons of MOBT relaxases led to the identification of MOBT conserved motifs. These motifs, together with the construction of a 3D model of the relaxase domain of RelSt3, allowed us to determine conserved residues of the RelSt3 active site. The involvement of these residues in DNA nicking activity was demonstrated by targeted mutagenesis. CONCLUSIONS: All together, this work argues in favor of MOBT being a full family of non-canonical relaxases. The biochemical and structural characterization of a MOBT member provides new insights on the molecular mechanism of conjugative transfer mediated by ICEs in Gram-positive bacteria. This could be a first step towards conceiving rational strategies to control gene transfer in these bacteria.

5.
Bioinformatics ; 35(23): 5003-5010, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31125060

ABSTRACT

MOTIVATION: Protein-protein docking algorithms aim to predict the 3D structure of a binary complex using the structures of the individual proteins. This typically involves searching and scoring in a 6D space. Many docking algorithms use FFT techniques to exhaustively cover the search space and to accelerate the scoring calculation. However, FFT docking results often depend on the initial protein orientations with respect to the Fourier sampling grid. Furthermore, Fourier-transforming a physics-base force field can involve a serious loss of precision. RESULTS: Here, we present EROS-DOCK, an algorithm to rigidly dock two proteins using a series of exhaustive 3D rotational searches in which non-clashing orientations are scored using the ATTRACT coarse-grained force field model. The rotational space is represented as a quaternion 'π-ball', which is systematically sub-divided in a 'branch-and-bound' manner, allowing efficient pruning of rotations that will give steric clashes. The algorithm was tested on 173 Docking Benchmark complexes, and results were compared with those of ATTRACT and ZDOCK. According to the CAPRI quality criteria, EROS-DOCK typically gives more acceptable or medium quality solutions than ATTRACT and ZDOCK. AVAILABILITY AND IMPLEMENTATION: The EROS-DOCK program is available for download at http://erosdock.loria.fr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Molecular Docking Simulation , Protein Binding , Protein Conformation , Proteins
6.
BMC Bioinformatics ; 19(Suppl 14): 413, 2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30453875

ABSTRACT

BACKGROUND: Families of related proteins and their different functions may be described systematically using common classifications and ontologies such as Pfam and GO (Gene Ontology), for example. However, many proteins consist of multiple domains, and each domain, or some combination of domains, can be responsible for a particular molecular function. Therefore, identifying which domains should be associated with a specific function is a non-trivial task. RESULTS: We describe a general approach for the computational discovery of associations between different sets of annotations by formalising the problem as a bipartite graph enrichment problem in the setting of a tripartite graph. We call this approach "CODAC" (for COmputational Discovery of Direct Associations using Common Neighbours). As one application of this approach, we describe "GODomainMiner" for associating GO terms with protein domains. We used GODomainMiner to predict GO-domain associations between each of the 3 GO ontology namespaces (MF, BP, and CC) and the Pfam, CATH, and SCOP domain classifications. Overall, GODomainMiner yields average enrichments of 15-, 41- and 25-fold GO-domain associations compared to the existing GO annotations in these 3 domain classifications, respectively. CONCLUSIONS: These associations could potentially be used to annotate many of the protein chains in the Protein Databank and protein sequences in UniProt whose domain composition is known but which currently lack GO annotation.


Subject(s)
Computational Biology/methods , Gene Ontology , Proteins/chemistry , Algorithms , Amino Acid Sequence , Area Under Curve , Databases, Protein , Molecular Sequence Annotation , Protein Domains
7.
Nat Methods ; 15(1): 67-72, 2018 01.
Article in English | MEDLINE | ID: mdl-29155427

ABSTRACT

Protein structures are key to understanding biomolecular mechanisms and diseases, yet their interpretation is hampered by limited knowledge of their biologically relevant quaternary structure (QS). A critical challenge in inferring QS information from crystallographic data is distinguishing biological interfaces from fortuitous crystal-packing contacts. Here, we tackled this problem by developing strategies for aligning and comparing QS states across both homologs and data repositories. QS conservation across homologs proved remarkably strong at predicting biological relevance and is implemented in two methods, QSalign and anti-QSalign, for annotating homo-oligomers and monomers, respectively. QS conservation across repositories is implemented in QSbio (http://www.QSbio.org), which approaches the accuracy of manual curation and allowed us to predict >100,000 QS states across the Protein Data Bank. Based on this high-quality data set, we analyzed pairs of structurally conserved interfaces, and this analysis revealed a striking plasticity whereby evolutionary distant interfaces maintain similar interaction geometries through widely divergent chemical properties.


Subject(s)
Computational Biology/methods , Databases, Protein , Protein Multimerization , Protein Structure, Quaternary , Proteins/chemistry , Humans , Models, Molecular , Protein Binding
8.
BMC Bioinformatics ; 18(1): 107, 2017 Feb 13.
Article in English | MEDLINE | ID: mdl-28193156

ABSTRACT

BACKGROUND: Many entries in the protein data bank (PDB) are annotated to show their component protein domains according to the Pfam classification, as well as their biological function through the enzyme commission (EC) numbering scheme. However, despite the fact that the biological activity of many proteins often arises from specific domain-domain and domain-ligand interactions, current on-line resources rarely provide a direct mapping from structure to function at the domain level. Since the PDB now contains many tens of thousands of protein chains, and since protein sequence databases can dwarf such numbers by orders of magnitude, there is a pressing need to develop automatic structure-function annotation tools which can operate at the domain level. RESULTS: This article presents ECDomainMiner, a novel content-based filtering approach to automatically infer associations between EC numbers and Pfam domains. ECDomainMiner finds a total of 20,728 non-redundant EC-Pfam associations with a F-measure of 0.95 with respect to a "Gold Standard" test set extracted from InterPro. Compared to the 1515 manually curated EC-Pfam associations in InterPro, ECDomainMiner infers a 13-fold increase in the number of EC-Pfam associations. CONCLUSION: These EC-Pfam associations could be used to annotate some 58,722 protein chains in the PDB which currently lack any EC annotation. The ECDomainMiner database is publicly available at http://ecdm.loria.fr/ .


Subject(s)
Computational Biology/methods , Data Mining/methods , Databases, Protein , Enzymes , Proteins , Enzymes/chemistry , Enzymes/genetics , Enzymes/metabolism , Proteins/chemistry , Proteins/genetics , Proteins/metabolism
9.
Proteins ; 85(3): 463-469, 2017 03.
Article in English | MEDLINE | ID: mdl-27701764

ABSTRACT

Many of the modeling targets in the blind CASP-11/CAPRI-30 experiment were protein homo-dimers and homo-tetramers. Here, we perform a retrospective docking-based analysis of the perfectly symmetrical CAPRI Round 30 targets whose crystal structures have been published. Starting from the CASP "stage-2" fold prediction models, we show that using our recently developed "SAM" polar Fourier symmetry docking algorithm combined with NAMD energy minimization often gives acceptable or better 3D models of the target complexes. We also use SAM to analyze the overall quality of all CASP structural models for the selected targets from a docking-based perspective. We demonstrate that docking only CASP "center" structures for the selected targets provides a fruitful and economical docking strategy. Furthermore, our results show that many of the CASP models are dockable in the sense that they can lead to acceptable or better models of symmetrical complexes. Even though SAM is very fast, using docking and NAMD energy minimization to pull out acceptable docking models from a large ensemble of docked CASP models is computationally expensive. Nonetheless, thanks to our SAM docking algorithm, we expect that applying our docking protocol on a modern computer cluster will give us the ability to routinely model 3D structures of symmetrical protein complexes from CASP-quality models. Proteins 2017; 85:463-469. © 2016 Wiley Periodicals, Inc.


Subject(s)
Algorithms , Computational Biology/methods , Molecular Docking Simulation/methods , Proteins/chemistry , Software , Amino Acid Motifs , Benchmarking , Binding Sites , Crystallography, X-Ray , Protein Binding , Protein Conformation , Protein Interaction Mapping , Protein Multimerization , Research Design , Structural Homology, Protein , Thermodynamics
10.
Bioinformatics ; 32(17): i693-i701, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27587691

ABSTRACT

MOTIVATION: Docking prediction algorithms aim to find the native conformation of a complex of proteins from knowledge of their unbound structures. They rely on a combination of sampling and scoring methods, adapted to different scales. Polynomial Expansion of Protein Structures and Interactions for Docking (PEPSI-Dock) improves the accuracy of the first stage of the docking pipeline, which will sharpen up the final predictions. Indeed, PEPSI-Dock benefits from the precision of a very detailed data-driven model of the binding free energy used with a global and exhaustive rigid-body search space. As well as being accurate, our computations are among the fastest by virtue of the sparse representation of the pre-computed potentials and FFT-accelerated sampling techniques. Overall, this is the first demonstration of a FFT-accelerated docking method coupled with an arbitrary-shaped distance-dependent interaction potential. RESULTS: First, we present a novel learning process to compute data-driven distant-dependent pairwise potentials, adapted from our previous method used for rescoring of putative protein-protein binding poses. The potential coefficients are learned by combining machine-learning techniques with physically interpretable descriptors. Then, we describe the integration of the deduced potentials into a FFT-accelerated spherical sampling provided by the Hex library. Overall, on a training set of 163 heterodimers, PEPSI-Dock achieves a success rate of 91% mid-quality predictions in the top-10 solutions. On a subset of the protein docking benchmark v5, it achieves 44.4% mid-quality predictions in the top-10 solutions when starting from bound structures and 20.5% when starting from unbound structures. The method runs in 5-15 min on a modern laptop and can easily be extended to other types of interactions. AVAILABILITY AND IMPLEMENTATION: https://team.inria.fr/nano-d/software/PEPSI-Dock CONTACT: sergei.grudinin@inria.fr.


Subject(s)
Algorithms , Models, Theoretical , Molecular Conformation , Protein Binding , Machine Learning , Molecular Docking Simulation , Protein Conformation , Proteins
11.
Proc Natl Acad Sci U S A ; 113(30): E4286-93, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27412858

ABSTRACT

Energy evaluation using fast Fourier transforms (FFTs) enables sampling billions of putative complex structures and hence revolutionized rigid protein-protein docking. However, in current methods, efficient acceleration is achieved only in either the translational or the rotational subspace. Developing an efficient and accurate docking method that expands FFT-based sampling to five rotational coordinates is an extensively studied but still unsolved problem. The algorithm presented here retains the accuracy of earlier methods but yields at least 10-fold speedup. The improvement is due to two innovations. First, the search space is treated as the product manifold [Formula: see text], where [Formula: see text] is the rotation group representing the space of the rotating ligand, and [Formula: see text] is the space spanned by the two Euler angles that define the orientation of the vector from the center of the fixed receptor toward the center of the ligand. This representation enables the use of efficient FFT methods developed for [Formula: see text] Second, we select the centers of highly populated clusters of docked structures, rather than the lowest energy conformations, as predictions of the complex, and hence there is no need for very high accuracy in energy evaluation. Therefore, it is sufficient to use a limited number of spherical basis functions in the Fourier space, which increases the efficiency of sampling while retaining the accuracy of docking results. A major advantage of the method is that, in contrast to classical approaches, increasing the number of correlation function terms is computationally inexpensive, which enables using complex energy functions for scoring.


Subject(s)
Algorithms , Fourier Analysis , Molecular Docking Simulation/methods , Protein Conformation , Proteins/chemistry , Magnetic Resonance Spectroscopy/methods , Protein Binding , Proteins/metabolism , Reproducibility of Results , Rotation , Thermodynamics
12.
Bioinformatics ; 32(17): 2650-8, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27187202

ABSTRACT

MOTIVATION: Calculating multiple protein structure alignments (MSAs) is important for understanding functional and evolutionary relationships between protein families, and for modeling protein structures by homology. While incorporating backbone flexibility promises to circumvent many of the limitations of rigid MSA algorithms, very few flexible MSA algorithms exist today. This article describes several novel improvements to the Kpax algorithm which allow high quality flexible MSAs to be calculated. This article also introduces a new Gaussian-based MSA quality measure called 'M-score', which circumvents the pitfalls of RMSD-based quality measures. RESULTS: As well as calculating flexible MSAs, the new version of Kpax can also score MSAs from other aligners and from previously aligned reference datasets. Results are presented for a large-scale evaluation of the Homstrad, SABmark and SISY benchmark sets using Kpax and Matt as examples of state-of-the-art flexible aligners and 3DCOMB as an example of a state-of-the-art rigid aligner. These results demonstrate the utility of the M-score as a measure of MSA quality and show that high quality MSAs may be achieved when structural flexibility is properly taken into account. AVAILABILITY AND IMPLEMENTATION: Kpax 5.0 may be downloaded for academic use at http://kpax.loria.fr/ CONTACT: dave.ritchie@inria.fr SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Proteins , Sequence Alignment , Algorithms , Models, Statistical , Normal Distribution , Software
13.
Proteins ; 84 Suppl 1: 323-48, 2016 09.
Article in English | MEDLINE | ID: mdl-27122118

ABSTRACT

We present the results for CAPRI Round 30, the first joint CASP-CAPRI experiment, which brought together experts from the protein structure prediction and protein-protein docking communities. The Round comprised 25 targets from amongst those submitted for the CASP11 prediction experiment of 2014. The targets included mostly homodimers, a few homotetramers, and two heterodimers, and comprised protein chains that could readily be modeled using templates from the Protein Data Bank. On average 24 CAPRI groups and 7 CASP groups submitted docking predictions for each target, and 12 CAPRI groups per target participated in the CAPRI scoring experiment. In total more than 9500 models were assessed against the 3D structures of the corresponding target complexes. Results show that the prediction of homodimer assemblies by homology modeling techniques and docking calculations is quite successful for targets featuring large enough subunit interfaces to represent stable associations. Targets with ambiguous or inaccurate oligomeric state assignments, often featuring crystal contact-sized interfaces, represented a confounding factor. For those, a much poorer prediction performance was achieved, while nonetheless often providing helpful clues on the correct oligomeric state of the protein. The prediction performance was very poor for genuine tetrameric targets, where the inaccuracy of the homology-built subunit models and the smaller pair-wise interfaces severely limited the ability to derive the correct assembly mode. Our analysis also shows that docking procedures tend to perform better than standard homology modeling techniques and that highly accurate models of the protein components are not always required to identify their association modes with acceptable accuracy. Proteins 2016; 84(Suppl 1):323-348. © 2016 Wiley Periodicals, Inc.


Subject(s)
Computational Biology/statistics & numerical data , Models, Statistical , Molecular Docking Simulation , Molecular Dynamics Simulation , Proteins/chemistry , Software , Algorithms , Amino Acid Motifs , Bacteria/chemistry , Binding Sites , Computational Biology/methods , Humans , International Cooperation , Internet , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Folding , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Thermodynamics
14.
Methods Mol Biol ; 1415: 91-105, 2016.
Article in English | MEDLINE | ID: mdl-27115629

ABSTRACT

Comparing and classifying protein domain interactions according to their three-dimensional (3D) structures can help to understand protein structure-function and evolutionary relationships. Additionally, structural knowledge of existing domain-domain interactions can provide a useful way to find structural templates with which to model the 3D structures of unsolved protein complexes. Here we present a straightforward guide to using the "Kbdock" protein domain structure database and its associated web site for exploring and comparing protein domain-domain interactions (DDIs) and domain-peptide interactions (DPIs) at the Pfam domain family level. We also briefly explain how the Kbdock web site works, and we provide some notes and suggestions which should help to avoid some common pitfalls when working with 3D protein domain structures.


Subject(s)
Databases, Protein , Proteins/chemistry , Proteins/metabolism , Internet , Models, Molecular , Molecular Docking Simulation , Protein Binding , Protein Domains , Protein Interaction Domains and Motifs , Protein Interaction Maps , Protein Structure, Secondary , Protein Structure, Tertiary
15.
J Chem Inf Model ; 55(9): 1804-23, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26251970

ABSTRACT

The in silico prediction of unwanted side effects (SEs) caused by the promiscuous behavior of drugs and their targets is highly relevant to the pharmaceutical industry. Considerable effort is now being put into computational and experimental screening of several suspected off-target proteins in the hope that SEs might be identified early, before the cost associated with developing a drug candidate rises steeply. Following this need, we present a new method called GESSE to predict potential SEs of drugs from their physicochemical properties (three-dimensional shape plus chemistry) and to target protein data extracted from predicted drug-target relationships. The GESSE approach uses a canonical correlation analysis of the full drug-target and drug-SE matrices, and it then calculates a probability that each drug in the resulting drug-target matrix will have a given SE using a Bayesian discriminant analysis (DA) technique. The performance of GESSE is quantified using retrospective (external database) analysis and literature examples by means of area under the ROC curve analysis, "top hit rates", misclassification rates, and a χ(2) independence test. Overall, the robust and very promising retrospective statistics obtained and the many SE predictions that have experimental corroboration demonstrate that GESSE can successfully predict potential drug-SE profiles of candidate drug compounds from their predicted drug-target relationships.


Subject(s)
Drug Delivery Systems , Drug-Related Side Effects and Adverse Reactions , ROC Curve , Retrospective Studies
16.
Sci Rep ; 5: 10760, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26030356

ABSTRACT

ß-arrestins serve as signaling scaffolds downstream of G protein-coupled receptors, and thus play a crucial role in a plethora of cellular processes. Although it is largely accepted that the ability of ß-arrestins to interact simultaneously with many protein partners is key in G protein-independent signaling of GPCRs, only the precise knowledge of these multimeric arrangements will allow a full understanding of the dynamics of these interactions and their functional consequences. However, current experimental procedures for the determination of the three-dimensional structures of protein-protein complexes are not well adapted to analyze these short-lived, multi-component assemblies. We propose a model of the receptor/ß-arrestin/Erk1 signaling module, which is consistent with most of the available experimental data. Moreover, for the ß-arrestin/Raf1 and the ß-arrestin/ERK interactions, we have used the model to design interfering peptides and shown that they compete with both partners, hereby demonstrating the validity of the predicted interaction regions.


Subject(s)
Arrestins/chemistry , Extracellular Signal-Regulated MAP Kinases/chemistry , Models, Molecular , Receptors, G-Protein-Coupled/chemistry , Arrestins/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , MAP Kinase Kinase 1/chemistry , MAP Kinase Kinase 1/metabolism , Molecular Docking Simulation , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Binding , Protein Conformation , Proto-Oncogene Proteins pp60(c-src)/chemistry , Proto-Oncogene Proteins pp60(c-src)/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , beta-Arrestins , src Homology Domains
17.
Biology (Basel) ; 4(2): 327-43, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25860777

ABSTRACT

While the number of solved 3D protein structures continues to grow rapidly, the structural rules that distinguish protein-protein interactions between different structural families are still not clear. Here, we classify and analyse the secondary structural features and promiscuity of a comprehensive non-redundant set of domain family binding sites (DFBSs) and hetero domain-domain interactions (DDIs) extracted from our updated KBDOCK resource. We have partitioned 4001 DFBSs into five classes using their propensities for three types of secondary structural elements ("α" for helices, "ß" for strands, and "γ" for irregular structure) and we have analysed how frequently these classes occur in DDIs. Our results show that ß elements are not highly represented in DFBSs compared to α and γ elements. At the DDI level, all classes of binding sites tend to preferentially bind to the same class of binding sites and α/ß contacts are significantly disfavored. Very few DFBSs are promiscuous: 80% of them interact with just one Pfam domain. About 50% of our Pfam domains bear only one single-partner DFBS and are therefore monogamous in their interactions with other domains. Conversely, promiscuous Pfam domains bear several DFBSs among which one or two are promiscuous, thereby multiplying the promiscuity of the concerned protein.

18.
J Chem Inf Model ; 54(3): 720-34, 2014 Mar 24.
Article in English | MEDLINE | ID: mdl-24494653

ABSTRACT

Polypharmacology is now recognized as an increasingly important aspect of drug design. We previously introduced the Gaussian ensemble screening (GES) approach to predict relationships between drug classes rapidly without requiring thousands of bootstrap comparisons as in current promiscuity prediction approaches. Here we present the GES "computational polypharmacology fingerprint" (CPF), the first target fingerprint to encode drug promiscuity information. The similarity between the 3D shapes and chemical properties of ligands is calculated using PARAFIT and our HPCC programs to give a consensus shape-plus-chemistry ligand similarity score, and ligand promiscuity for a given set of targets is quantified using the GES fingerprints. To demonstrate our approach, we calculated the CPFs for a set of ligands from DrugBank that are related to some 800 targets. The performance of the approach was measured by comparing our CPF with an in-house "experimental polypharmacology fingerprint" (EPF) built using publicly available experimental data for the targets that comprise the fingerprint. Overall, the GES CPF gives very low fall-out while still giving high precision. We present examples of polypharmacology relationships predicted by our approach that have been experimentally validated. This demonstrates that our CPF approach can successfully describe drug-target relationships and can serve as a novel drug repurposing method for proposing new targets for preclinical compounds and clinical drug candidates.


Subject(s)
Drug Design , Drug Repositioning/methods , Pharmaceutical Preparations/chemistry , Databases, Pharmaceutical , Ligands , Models, Molecular , Normal Distribution , Polypharmacology
19.
Nucleic Acids Res ; 42(Database issue): D389-95, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24271397

ABSTRACT

Comparing, classifying and modelling protein structural interactions can enrich our understanding of many biomolecular processes. This contribution describes Kbdock (http://kbdock.loria.fr/), a database system that combines the Pfam domain classification with coordinate data from the PDB to analyse and model 3D domain-domain interactions (DDIs). Kbdock can be queried using Pfam domain identifiers, protein sequences or 3D protein structures. For a given query domain or pair of domains, Kbdock retrieves and displays a non-redundant list of homologous DDIs or domain-peptide interactions in a common coordinate frame. Kbdock may also be used to search for and visualize interactions involving different, but structurally similar, Pfam families. Thus, structural DDI templates may be proposed even when there is little or no sequence similarity to the query domains.


Subject(s)
Databases, Protein , Protein Interaction Domains and Motifs , Binding Sites , Internet , Models, Molecular , Molecular Docking Simulation , Protein Interaction Mapping , Protein Interaction Maps , Proteins/classification , Sequence Alignment , Sequence Analysis, Protein
20.
Proteins ; 82(1): 34-44, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23775700

ABSTRACT

In spite of the abundance of oligomeric proteins within a cell, the structural characterization of protein-protein interactions is still a challenging task. In particular, many of these interactions involve heteromeric complexes, which are relatively difficult to determine experimentally. Hence there is growing interest in using computational techniques to model such complexes. However, assembling large heteromeric complexes computationally is a highly combinatorial problem. Nonetheless the problem can be simplified greatly by considering interactions between protein trimers. After dimers and monomers, triangular trimers (i.e. trimers with pair-wise contacts between all three pairs of proteins) are the most frequently observed quaternary structural motifs according to the three-dimensional (3D) complex database. This article presents DockTrina, a novel protein docking method for modeling the 3D structures of nonsymmetrical triangular trimers. The method takes as input pair-wise contact predictions from a rigid body docking program. It then scans and scores all possible combinations of pairs of monomers using a very fast root mean square deviation test. Finally, it ranks the predictions using a scoring function which combines triples of pair-wise contact terms and a geometric clash penalty term. The overall approach takes less than 2 min per complex on a modern desktop computer. The method is tested and validated using a benchmark set of 220 bound and seven unbound protein trimer structures. DockTrina will be made available at http://nano-d.inrialpes.fr/software/docktrina.


Subject(s)
Algorithms , Computational Biology/methods , Models, Molecular , Molecular Docking Simulation , Multiprotein Complexes/chemistry , Protein Multimerization/genetics , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...