Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38642328

ABSTRACT

BACKGROUND: Although allergy might be another factor that exacerbates lupus as demonstrated by several epidemiologic studies, the direct correlation between lupus activities and allergy is still in question. OBJECTIVE: To explore the correlation between allergic reaction and lupus activities. METHODS: The allergic asthma model using ovalbumin (OVA) administration in wildtype (WT) and Fc gamma receptor IIb deficient (FcgRIIb-/-) mice (a lupus-prone model) together with in vitro experiments on bone marrow-derived dendritic cells (DCs) were performed. RESULTS: At 2-weeks-post OVA, both WT and FcgRIIb-/- mice demonstrated similar allergic reaction as indicated by an elevation of IgE and IL-4 in serum with asthma-liked lung histology (lung weight, inflammatory score, and bronchial thickness) with increased spleen weight. Apoptosis in the lungs and spleens (activated caspase 3 immunohistochemistry) was detected only in OVA-administered FcgRIIb-/- mice. Surprisingly, OVA-administered FcgRIIb-/- mice, demonstrated active lupus nephritis, as indicated by anti-dsDNA, proteinuria, and renal immune complex deposition (immunohistochemistry analysis) implying an impact of allergy on lupus activities. Meanwhile, serum creatinine and gut permeability defect (FitC-dextran assay and endotoxemia) were not different between the FcgRIIb-/- mice with OVA versus with control. In parallel, FcgRIIb-/- DCs were more susceptible to activations by OVA and lipopolysaccharide (LPS) than WT DCs as demonstrated by CD80 with major histocompatibility complex II (MHC II) using flow cytometry analysis. CONCLUSION: OVA-induced allergy in FcgRIIb-/- mice exacerbated lupus activity, possibly due to hyper-responsiveness of FcgRIIb-/- DCs over WT from the loss of inhibitory FcgRIIb. The proper control of allergy might be beneficial for lupus.

2.
Pharmaceutics ; 15(12)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38140036

ABSTRACT

Macrophage polarization requires different energy sources and metabolic processes. Therefore, cell energy interference to alter macrophage functions has been proposed as a treatment for severe inflammatory diseases, including sepsis. In this study, targeting cell energy using BAM15 (a mitochondrial uncoupling agent) in human THP-1 and mouse RAW264.7 macrophages prominently interfered with M1 but not M2 polarization. Free BAM15 (BAM15) and BAM15-loaded PLGA particles (BAM15 particles) reduced the inflammatory response of M1 macrophages and enhanced the expression of M2 signature genes with the restoration of mitochondrial activity (extracellular flux analysis) in RAW264.7 cells. Furthermore, BAM15 particles but not BAM15 showed specific effects on the inflammatory response of macrophages but not neutrophils, and the particles were actively captured by splenic and liver macrophages in vivo. Administration of BAM15 and BAM15 particles attenuated the severity of sepsis in LPS-induced sepsis mice. Interestingly, BAM15 particles but not BAM15 alleviated LPS-induced liver injury by reducing hepatic inflammation. Our findings substantiate the superior efficacy of macrophage-targeted therapy using a BAM15 particle-delivery system and provide further support for clinical development as a potential therapy for severe inflammatory diseases.

3.
PLoS Negl Trop Dis ; 17(11): e0011781, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37983293

ABSTRACT

Leptospirosis is a global zoonosis caused by pathogenic Leptospira. The disease outcome is influenced by the interplay between innate and adaptive immune responses. Dendritic cells (DCs) play a crucial role in shaping the adaptive immune response. A recent study revealed that pathogenic Leptospira limited the activation of human monocyte-derived dendritic cells (MoDCs) compared to non-pathogenic Leptospira, but their impact on T-cell responses has not been investigated. Our study is the first to explore how viable pathogenic and non-pathogenic Leptospira affect the interaction between human MoDCs and T cells. We found that MoDCs infected with pathogenic leptospires (L. interrogans serovar Pomona and a clinical isolate, MoDCs-P) exhibited lower levels of CD80 and CD83 expression, suggesting partially impaired MoDC maturation, induced regulatory T cells (Tregs) while failing to induce CD4+ T cell proliferation, compared to MoDCs infected with non-pathogenic leptospires (L. biflexa serovar Patoc and L. meyeri serovar Ranarum, MoDCs-NP). In contrast, non-pathogenic leptospires enhanced MoDC maturation and induced higher T cell proliferation including IFN-γ-producing CD4+ T cells, indicative of a Th1-type response. Furthermore, pathogenic leptospires induced higher MoDC apoptosis through a cysteine aspartic acid-specific protease-3 (caspase-3)-dependent pathway and upregulated expression of the prostaglandin-endoperoxide synthase 2 (PTGS2) gene. Notably, prostaglandin E2 (PGE2), a product of the PTGS2 pathway, was found at higher levels in the sera of patients with acute leptospirosis and in the supernatant of MoDCs-P, possibly contributing to Treg induction, compared to those of healthy donors and MoDCs-NP, respectively. In conclusion, this study reveals a novel immunosuppressive strategy employed by pathogenic Leptospira to evade host immunity by partially impairing MoDC maturation and inducing Tregs. These findings deepen our understanding of leptospirosis pathogenesis in humans and may provide a novel strategy to modulate DCs for the prevention and treatment of the disease.


Subject(s)
Leptospira , Leptospirosis , Humans , Monocytes , T-Lymphocytes, Regulatory , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cell Differentiation , Cells, Cultured , Leptospirosis/metabolism , Dendritic Cells
4.
Int J Mol Sci ; 24(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37239864

ABSTRACT

Despite a previous report on less inflammatory responses in mice with an absence of the enhancer of zeste homologue 2 (Ezh2), a histone lysine methyltransferase of epigenetic regulation, using a lipopolysaccharide (LPS) injection model, proteomic analysis and cecal ligation and puncture (CLP), a sepsis model that more resembles human conditions was devised. As such, analysis of cellular and secreted protein (proteome and secretome) after a single LPS activation and LPS tolerance in macrophages from Ezh2 null (Ezh2flox/flox; LysM-Crecre/-) mice (Ezh2 null) and the littermate control mice (Ezh2fl/fl; LysM-Cre-/-) (Ezh2 control) compared with the unstimulated cells from each group indicated fewer activities in Ezh2 null macrophages, especially by the volcano plot analysis. Indeed, supernatant IL-1ß and expression of genes in pro-inflammatory M1 macrophage polarization (IL-1ß and iNOS), TNF-α, and NF-κB (a transcription factor) were lower in Ezh2 null macrophages compared with the control. In LPS tolerance, downregulated NF-κB compared with the control was also demonstrated in Ezh2 null cells. In CLP sepsis mice, those with CLP alone and CLP at 2 days after twice receiving LPS injection, representing sepsis and sepsis after endotoxemia, respectively, symptoms were less severe in Ezh2 null mice, as indicated by survival analysis and other biomarkers. However, the Ezh2 inhibitor improved survival only in CLP, but not LPS with CLP. In conclusion, an absence of Ezh2 in macrophages resulted in less severe sepsis, and the use of an Ezh2 inhibitor might be beneficial in sepsis.


Subject(s)
Endotoxemia , Sepsis , Animals , Humans , Mice , Endotoxemia/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Epigenesis, Genetic , Ligation , Lipopolysaccharides , Macrophages/metabolism , Mice, Knockout , NF-kappa B/metabolism , Proteomics , Punctures , Sepsis/genetics , Sepsis/metabolism , Tumor Necrosis Factor-alpha/metabolism
5.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37176021

ABSTRACT

Dendritic cells (DCs) are the most potent antigen-presenting cells that have multifaceted functions in the control of immune activation and tolerance. Hyperresponsiveness and altered tolerogenicity of DCs contribute to the development and pathogenesis of system lupus erythematosus (SLE); therefore, DC-targeted therapies aimed at inducing specific immune tolerance have become of great importance for the treatment of SLE. This study developed a new nanoparticle (NP) containing a biodegradable PDMAEMA-PLGA copolymer for target-oriented delivery to DCs in situ. PDMAEMA-PLGA NPs provided sustained drug release and exhibited immunosuppressive activity in FLT3L and GM-CSF-derived bone marrow in conventional DCs (BM-cDCs). PDMAEMA-PLGA NPs improved dexamethasone capability to convert wild-type and Fcgr2b-/- BM-cDCs from an immunogenic to tolerogenic state, and BM-cDCs treated with dexamethasone-incorporated PDMAEMA-PLGA NPs (Dex-NPs) efficiently mediated regulatory T cell (Treg) expansion in vitro. Dex-NP therapy potentially alleviated lupus disease in Fcgr2b-/- mice by mediating Foxp3+ Treg expansion in an antigen-specific manner. Our findings substantiate the superior efficacy of DC-targeted therapy using the PDMAEMA-PLGA NP delivery system and provide further support for clinical development as a potential therapy for SLE. Furthermore, PDMAEMA-PLGA NP may be a versatile platform for DC-targeted therapy to induce antigen-specific immune tolerance to unwanted immune responses that occur in autoimmune disease, allergy, and transplant rejection.


Subject(s)
Lupus Erythematosus, Systemic , Nanoparticles , Mice , Animals , Antigens , Immune Tolerance , Lupus Erythematosus, Systemic/therapy , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Dexamethasone/pharmacology , Dendritic Cells , Receptors, IgG/genetics
6.
J Endod ; 49(2): 190-197, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36586575

ABSTRACT

INTRODUCTION: Candida spp. has recently been introduced to interact with conventional carious bacteria, leading to dental caries progression and virulence ability. Evidence regarding the influence of Candida spp. on human dental pulp cell response remains unknown. This study aimed to investigate the effects of Candida albicans mannans on cytotoxicity, cell proliferation, osteogenic differentiation, and inflammatory-related gene expression in human dental pulp cells (hDPCs). METHODS: hDPCs were treated with cell wall mannans isolated from C. albicans, Candida krusei, Candida glabrata, Candida tropocalis, Candida parapsilosis, and Candida dubliniensis. Cell viability was performed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay. Osteogenic differentiation- and inflammatory-related gene expression were determined using a real-time polymerase chain reaction. Mineralization was examined using alizarin red S staining. RESULTS: The treatment of mannans isolated from C. albicans, C. krusei, C. glabrata, C. tropocalis, C. parapsilosis, and C. dubliniensis at concentrations ranging from 10-100 µg/mL did not affect cytotoxicity or cell proliferation. Mannans isolated from C. albicans, C. glabrata, and C. tropocalis significantly attenuated mineralization. However, cell wall mannans isolated from C. krusei, C. parapsilosis, and C. dubliniensis did not significantly influence mineral deposition in hDPCs. C. albicans cell wall mannans significantly attenuated osteogenic differentiation-related gene expression (RUNX2, ALP, and ENPP1). Interestingly, IL12 messenger RNA expression was significantly upregulated when treated with C. albicans cell wall mannans. The addition of recombinant IL12 significantly decreased mineralization in hDPCs. CONCLUSIONS: C. albicans cell wall mannans attenuated osteogenic differentiation in hDPCs and up-regulated inflammatory-related gene IL12 expression.


Subject(s)
Dental Caries , Mannans , Humans , Osteogenesis , Dental Pulp , Candida , Cell Differentiation/physiology , Cell Wall , Interleukin-12
7.
J Innate Immun ; : 1-22, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36219976

ABSTRACT

The prevalence of obesity is increasing, and the coexistence of obesity and systemic lupus erythematosus (lupus) is possible. A high-fat diet (HFD) was orally administered for 6 months in female 8-week-old Fc gamma receptor IIb deficient (FcgRIIb-/-) lupus or age and gender-matched wild-type (WT) mice. Lupus nephritis (anti-dsDNA, proteinuria, and increased creatinine), gut barrier defect (fluorescein isothiocyanate dextran), serum lipopolysaccharide (LPS), serum interleukin (IL)-6, liver injury (alanine transaminase), organ fibrosis (liver and kidney pathology), spleen apoptosis (activated caspase 3), and aorta thickness (but not weight gain and lipid profiles) were more prominent in HFD-administered FcgRIIb-/- mice than the obese WT, without injury in regular diet-administered mice (both FcgRIIb-/- and WT). In parallel, combined palmitic acid (PA; a saturated fatty acid) with LPS (PA + LPS) induced higher tumor necrotic factor-α, IL-6, and IL-10 in the supernatant, inflammatory genes (inducible nitric oxide synthase and IL-1ß), reactive oxygen species (dihydroethidium), and glycolysis with reduced mitochondrial activity (extracellular flux analysis) when compared with the activation by each molecule alone in both FcgRIIb-/- and WT macrophages. However, the alterations of these parameters were more prominent in PA + LPS-administered FcgRIIb-/- than in the WT cells. In conclusion, obesity accelerated inflammation in FcgRIIb-/- mice, partly due to the more potent responses from the loss of inhibitory FcgRIIb against PA + LPS with obesity-induced gut barrier defect.

8.
Int J Mol Sci ; 23(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35628259

ABSTRACT

BAM15 (a mitochondrial uncoupling agent) was tested on cecal ligation and puncture (CLP) sepsis mice with in vitro experiments. BAM15 attenuated sepsis as indicated by survival, organ histology (kidneys and livers), spleen apoptosis (activated caspase 3), brain injury (SHIRPA score, serum s100ß, serum miR370-3p, brain miR370-3p, brain TNF-α, and apoptosis), systemic inflammation (cytokines, cell-free DNA, endotoxemia, and bacteremia), and blood-brain barrier (BBB) damage (Evan's blue dye and the presence of green fluorescent E. coli in brain after an oral administration). In parallel, brain miR arrays demonstrated miR370-3p at 24 h but not 120 h post-CLP, which was correlated with metabolic pathways. Either lipopolysaccharide (LPS) or TNF-α upregulated miR370-3p in PC12 (neuron cells). An activation by sepsis factors (LPS, TNF-α, or miR370-3p transfection) damaged mitochondria (fluorescent color staining) and reduced cell ATP, possibly through profound mitochondrial activity (extracellular flux analysis) that was attenuated by BAM15. In bone-marrow-derived macrophages, LPS caused mitochondrial injury, decreased cell ATP, enhanced glycolysis activity (extracellular flux analysis), and induced pro-inflammatory macrophages (iNOS and IL-1ß) which were neutralized by BAM15. In conclusion, BAM15 attenuated sepsis through decreased mitochondrial damage, reduced neuronal miR370-3p upregulation, and induced anti-inflammatory macrophages. BAM15 is proposed to be used as an adjuvant therapy against sepsis hyperinflammation.


Subject(s)
Brain Diseases , MicroRNAs , Sepsis , Adenosine Triphosphate/genetics , Adenosine Triphosphate/metabolism , Animals , Brain Diseases/genetics , Brain Diseases/metabolism , Lipopolysaccharides/administration & dosage , Male , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Punctures , Sepsis/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
9.
Int J Mol Sci ; 23(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35163830

ABSTRACT

Although bacteria-free DNA in blood during systemic infection is mainly derived from bacterial death, translocation of the DNA from the gut into the blood circulation (gut translocation) is also possible. Hence, several mouse models with experiments on macrophages were conducted to explore the sources, influences, and impacts of bacteria-free DNA in sepsis. First, bacteria-free DNA and bacteriome in blood were demonstrated in cecal ligation and puncture (CLP) sepsis mice. Second, administration of bacterial lysate (a source of bacterial DNA) in dextran sulfate solution (DSS)-induced mucositis mice elevated blood bacteria-free DNA without bacteremia supported gut translocation of free DNA. The absence of blood bacteria-free DNA in DSS mice without bacterial lysate implies an impact of the abundance of bacterial DNA in intestinal contents on the translocation of free DNA. Third, higher serum cytokines in mice after injection of combined bacterial DNA with lipopolysaccharide (LPS), when compared to LPS injection alone, supported an influence of blood bacteria-free DNA on systemic inflammation. The synergistic effects of free DNA and LPS on macrophage pro-inflammatory responses, as indicated by supernatant cytokines (TNF-α, IL-6, and IL-10), pro-inflammatory genes (NFκB, iNOS, and IL-1ß), and profound energy alteration (enhanced glycolysis with reduced mitochondrial functions), which was neutralized by TLR-9 inhibition (chloroquine), were demonstrated. In conclusion, the presence of bacteria-free DNA in sepsis mice is partly due to gut translocation of bacteria-free DNA into the systemic circulation, which would enhance sepsis severity. Inhibition of the responses against bacterial DNA by TLR-9 inhibition could attenuate LPS-DNA synergy in macrophages and might help improve sepsis hyper-inflammation in some situations.


Subject(s)
Cytokines/blood , DNA, Bacterial/immunology , Dextran Sulfate/adverse effects , Lipopolysaccharides/immunology , Mucositis/immunology , Sepsis/immunology , Animals , Disease Models, Animal , Feces/microbiology , Interleukin-10/blood , Interleukin-6/blood , Lipopolysaccharides/adverse effects , Macrophages/drug effects , Macrophages/immunology , Mice , Mucositis/chemically induced , Mucositis/microbiology , Sepsis/chemically induced , Sepsis/microbiology , Tumor Necrosis Factor-alpha/blood
10.
Asian Pac J Allergy Immunol ; 40(2): 162-171, 2022 Jun.
Article in English | MEDLINE | ID: mdl-31586490

ABSTRACT

BACKGROUND: Secondary fungal infection is a major complication in patients with sepsis-associated immunosuppression. However, sepsis-induced immune alterations related to fungal susceptibility have not been well characterized. OBJECTIVES: To determine kinetic changes in the immune phenotype by determining the proportion of T cells, B cells and macrophages, and especially the expression of an immune exhaustion marker PD-1, in murine sepsis. In addition, sepsis -induced alterations of these immune cells were assessed in relation to susceptibility to secondary fungal infection. METHODS: Cecal ligation and puncture (CLP) was used as a mouse sepsis model, with Candida albicans as the secondary systemic fungal infection. Splenic T cells, B cells and macrophages were assessed by flow cytometry. RESULTS: Alterations in T cell and B cell numbers and the proportion of PD-1 expressing T cells and B cells in CLP mice were not clearly related to susceptibility to secondary Candida infection. By contrast, changes in levels of CD86+-activated macrophages, and the proportion of the PD-1+ population among the CD86+ macrophages in CLP mice were found to be related to secondary fungal infection susceptibility. CONCLUSIONS: Macrophage activation and exhaustion might be a significant determinant in susceptibility to fungal infection, and outcomes of infection. This study provided more comprehensive knowledge pertinent to patient evaluation and therapeutics design in restoring host defenses against secondary fungal infection in those with sepsis.


Subject(s)
Mycoses , Sepsis , Animals , Disease Models, Animal , Humans , Macrophages , Mice , Mice, Inbred C57BL , Phenotype , Programmed Cell Death 1 Receptor/metabolism
11.
Int J Mol Sci ; 22(21)2021 Oct 23.
Article in English | MEDLINE | ID: mdl-34768881

ABSTRACT

Although the enhanced responses against serum cell-free DNA (cfDNA) in cases of sepsis-a life-threatening organ dysfunction due to systemic infection-are understood, the influence of the cytosolic DNA receptor cGAS (cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) synthase) on sepsis is still unclear. Here, experiments on cGAS deficient (cGAS-/-) mice were conducted using cecal ligation and puncture (CLP) and lipopolysaccharide (LPS) injection sepsis models and macrophages. Severity of CLP in cGAS-/- mice was less severe than in wildtype (WT) mice, as indicated by mortality, serum LPS, cfDNA, leukopenia, cytokines (TNF-α, IL-6 and IL-10), organ histology (lung, liver and kidney) and spleen apoptosis. With the LPS injection model, serum cytokines in cGAS-/- mice were lower than in WT mice, despite the similar serum cfDNA level. Likewise, in LPS-activated WT macrophages, the expression of several mitochondria-associated genes (as revealed by RNA sequencing analysis) and a profound reduction in mitochondrial parameters, including maximal respiration (determined by extracellular flux analysis), DNA (mtDNA) and mitochondrial abundance (revealed by fluorescent staining), were demonstrated. These data implied the impact of cfDNA resulting from LPS-induced cell injury. In parallel, an additive effect of bacterial DNA on LPS, seen in comparison with LPS alone, was demonstrated in WT macrophages, but not in cGAS-/- cells, as indicated by supernatant cytokines (TNF-α and IL-6), M1 proinflammatory polarization (iNOS and IL-1ß), cGAS, IFN-γ and supernatant cyclic GMP-AMP (cGAMP). In conclusion, cGAS activation by cfDNA from hosts (especially mtDNA) and bacteria was found to induce an additive proinflammatory effect on LPS-activated macrophages which was perhaps responsible for the more pronounced sepsis hyperinflammation observed in WT mice compared with the cGAS-/- group.


Subject(s)
Nucleotidyltransferases/metabolism , Sepsis/metabolism , Animals , Cecum/metabolism , Cytokines/metabolism , DNA/metabolism , Interleukin-10/metabolism , Lipopolysaccharides/adverse effects , Lipopolysaccharides/pharmacology , Liver/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Nucleotidases/metabolism , Nucleotides, Cyclic , Nucleotidyltransferases/deficiency , Nucleotidyltransferases/genetics , Sepsis/prevention & control , Severity of Illness Index , Tumor Necrosis Factor-alpha/metabolism
12.
Dent Med Probl ; 58(3): 327-333, 2021.
Article in English | MEDLINE | ID: mdl-34449135

ABSTRACT

BACKGROUND: Orthodontic mini-implants can undergo corrosion and the release of metal ions can affect cellular behavior. Osteoclasts are involved in orthodontic tooth movement and implant stability. Osteoclasts and their precursors can be exposed to metal ions released from orthodontic mini-implants. OBJECTIVES: This study aimed to investigate the effect of metal ions released from orthodontic miniimplants on human osteoclastogenesis. MATERIAL AND METHODS: Stainless steel and titanium alloy mini-implants were separately immersed in culture media for 14 days (days 1-14), and then moved to new media for a further 14 days (days 15-28). The concentration of the released metal ions was measured. Osteoclast precursors derived from human CD14+ monocytes were cultured in these media and in a control medium without mini-implant immersion. Cell viability, the number of osteoclasts and the area of resorption were investigated. RESULTS: A higher concentration of metal ions was detected during the first 14 days as compared to the control. The concentration of these metal ions then declined after this period. The viability of osteoclast precursors was not affected by the released metal ions. There was a significant reduction in the number of osteoclasts when cultured in the medium with the titanium alloy mini-implants immersed for days 1-14. The area of resorption was also significantly reduced in this group. The media with the titanium alloy mini-implants immersed for days 15-28 and with the stainless steel mini-implants immersed for both study periods did not show statistically significant changes in the number of osteoclasts. CONCLUSIONS: Metal ions were released from orthodontic mini-implants in the early period and declined thereafter. Metal ions released from titanium mini-implants in the early period inhibited osteoclastogenesis, while metal ions from stainless steel mini-implants had no effect on osteoclast differentiation.


Subject(s)
Dental Implants , Orthodontic Anchorage Procedures , Dental Alloys , Humans , Ions , Osteogenesis
13.
Biotechnol Appl Biochem ; 68(6): 1508-1517, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33146942

ABSTRACT

Silkworm sericin has been widely exploited in biomaterials due to its favorable biological activities. However, the extraction processes of sericin from silkworm cocoons can alter the biological and biophysical properties, including a structural diversity of natural sericin. In addition, extracted natural sericin is often contaminated with fibroin that may be harmful to human cells. Induction of tolerogenic dendritic cell (DC) has become a strategy in biomaterial fields because this cell type plays a key role in immune modulation and wound healing. To overcome undesired effects of extracted natural sericin and to improve its biological properties, we biosynthesized sericin 1-like protein that contained only functional motifs and tested its biological activity and immunomodulatory properties in fibroblasts and DCs, respectively. In comparison to natural sericin, biosynthetic sericin 1 promoted collagen production in fibroblasts at a late time point. Furthermore, DCs treated with biosynthetic sericin 1 exhibited a tolerogenic-like phenotype with semimaturation and low production of proinflammatory cytokines, but high production of anti-inflammatory cytokine, IL-10. Biosynthetic sericin 1 might be developed as immunomodulator or immunosuppressant.


Subject(s)
Dendritic Cells/metabolism , Sericins/biosynthesis , Animals , Cells, Cultured , Collagen/biosynthesis , Dendritic Cells/chemistry , Female , Fibroblasts/metabolism , Mice , Mice, Inbred BALB C , Phenotype , Sericins/analysis
14.
Front Immunol ; 11: 959, 2020.
Article in English | MEDLINE | ID: mdl-32582149

ABSTRACT

FcgRIIB dysfunction is commonly found in patients with lupus, especially in Asia. LPS-tolerance is prominent in FcgRIIB-/- lupus mice. LPS-tolerant macrophages demonstrate cell energy depletion, which might affect lipid metabolism. Therefore, to explore lipid metabolism, LPS-tolerance was induced twice by LPS administration in macrophages and in mice. LPS-tolerant FcgRIIB-/- macrophages demonstrated lesser mitochondrial DNA (mtDNA), more severe ATP depletion, lower cytokine production, and higher lipid accumulation (oil red O staining) compared to LPS-tolerant WT cells. Mass-spectrometry-based lipidomic analysis demonstrated a higher abundance of phosphatidylethanolamine (PE) phospholipid in LPS-tolerant FcgRIIB-/- macrophages than WT cells. This was at least in part due to the lower expression of phosphatidylethanolamine N-methyltransferase (pemt), an enzyme that converts PE to phosphatidylcholine (PC). Aminoimidazole-4-carboxamide ribonucleotide (AICAR), a pemt inhibitor, worsens LPS-tolerance in WT macrophages and supports the impact of pemt upon LPS-tolerant FcgRIIB-/- macrophages. Additionally, phosphorylated AMP-activated protein kinase (AMPK-p), a molecule for ATP-restoration associated with pemt, and phosphorylated acetyl CoA carboxylase, a downstream signaling of AMPK-p, were higher in LPS-tolerant FcgRIIB-/- macrophages than WT. Furthermore, Compound C, an AMPK inhibitor, attenuated LPS-tolerance in both FcgRIIB-/- macrophages and mice. Taken together, the intense decrease in cytokine production after the second LPS stimulation (LPS-tolerance) in FcgRIIB-/- macrophages was possibly due to the impact of an immense cytokine synthesis after the first dose of LPS. This includes using up PEMT, an enzyme of phospholipid synthesis during cytokine production, and AMPK-p induction in response to profound ATP-depletion. Therefore, the manipulation of the AMPK/PEMT axis provides a novel therapeutic candidate for the treatment of severe LPS-tolerance in lupus.


Subject(s)
Endotoxemia/metabolism , Energy Metabolism , Lipid Metabolism , Lupus Erythematosus, Systemic/metabolism , Macrophages/metabolism , Receptors, IgG/deficiency , AMP-Activated Protein Kinases/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Endotoxemia/chemically induced , Endotoxemia/genetics , Female , Lipopolysaccharides , Lupus Erythematosus, Systemic/genetics , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Phagocytosis , Phosphatidylethanolamine N-Methyltransferase/metabolism , Phosphorylation , Receptors, IgG/genetics
15.
Front Cell Infect Microbiol ; 10: 566661, 2020.
Article in English | MEDLINE | ID: mdl-33552998

ABSTRACT

Host-Candida interaction has been broadly studied during Candida albicans infection, with a progressive shift in focus toward non-albicans Candida species. C. krusei is an emerging multidrug resistant pathogen causing rising morbidity and mortality worldwide. Therefore, understanding the interplay between the host immune system and C. krusei is critically important. Candia cell wall ß-glucans play significant roles in the induction of host protective immune responses. However, it remains unclear how C. krusei ß-glucan impacts dendritic cell (DC) responses. In this study, we investigated DC maturation and function in response to ß-glucans isolated from the cell walls of C. albicans, C. tropicalis, and C. krusei. These three distinct Candida ß-glucans had differential effects on expression of the DC marker, CD11c, and on DC maturation. Furthermore, bone-marrow derived DCs (BMDCs) showed enhanced cytokine responses characterized by substantial interleukin (IL)-10 production following C. krusei ß-glucan stimulation. BMDCs stimulated with C. krusei ß-glucan augmented IL-10 production by T cells in tandem with increased IL-10 production by BMDCs. Inhibition of dectin-1 ligation demonstrated that the interactions between dectin-1 on DCs and cell wall ß-glucans varied depending on the Candida species. The effects of C. krusei ß-glucan were partially dependent on dectin-1, and this dependence, in part, led to distinct DC responses. Our study provides new insights into immune regulation by C. krusei cell wall components. These data may be of use in the development of new clinical approaches for treatment of patients with C. krusei infection.


Subject(s)
beta-Glucans , Candida albicans , Dendritic Cells , Humans , Interleukin-10 , Lectins, C-Type , Pichia , T-Lymphocytes
16.
Shock ; 53(4): 514-524, 2020 04.
Article in English | MEDLINE | ID: mdl-31306346

ABSTRACT

BACKGROUND: Nosocomial aspergillosis in patients with sepsis has emerged in the past few years. Blockade of PD-1/PD-L pathway has tended to become a promising therapeutic strategy as it improved the outcome of bacterial sepsis and postsepsis secondary fungal infection. Recently, the controversial effects of PD-1 blockade on infectious diseases, including aspergillosis, have been demonstrated; therefore, the efficacy of anti-PD-1 drug still remains to be elucidated. METHODS: Cecal ligation and puncture (CLP) was conducted as a mouse sepsis model. Aspergillus fumigatus spores were intravenously inoculated on day 5 post-CLP, when the immune cells succumbed to exhaustion. Amphotericin B was medicated together with or without anti-PD-1 treatment after Aspergillus infection. RESULTS: Amphotericin B alone was not effective to treat the CLP-mice with secondary aspergillosis. In contrast, antifungal medication with the adjunctive anti-PD-1 treatment attenuated the fungal burdens in blood and internal organs, and improved the survival rate of the mice with secondary aspergillosis. These outcomes of PD-1 blockade were concurring with the enhanced CD86 expression on splenocytes, the augmented serum IFN-γ, and the dampened IL-10. Activated T cells from anti-PD-1-treated mice also highly increased IFN-γ and diminished IL-10 production. CONCLUSION: The blockade of PD-1 on postsepsis aspergillosis presumably reinvigorated exhausted antigen-presenting cells and T cells by upregulating CD86 expression and IFN-γ production, and dampened IL-10 production, which consequently leaded to the attenuation of secondary aspergillosis. The adjunctive anti-PD-1 therapy may become a promising strategy for the advanced immunotherapy against lethal fungal infection.


Subject(s)
Aspergillosis/prevention & control , Interferon-gamma/blood , Interleukin-10/blood , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Sepsis/complications , Animals , Antibodies, Monoclonal/therapeutic use , Aspergillosis/blood , Aspergillosis/etiology , Aspergillus fumigatus , Disease Models, Animal , Female , Immunologic Factors/therapeutic use , Mice , Mice, Inbred C57BL , Sepsis/blood , Sepsis/therapy
17.
Asian Pac J Allergy Immunol ; 38(4): 225-232, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31837212

ABSTRACT

System lupus erythematosus (SLE) is a chronic autoimmune disorder affecting multiple organs, and persistent disease activity is associated with increased morbidity and mortality. Impairment of immune cell function and loss of immune tolerance to self-antigens are significant determinants that trigger inflammation and drive SLE pathogenesis. Dendritic cells (DCs) are the most potent antigen-presenting cells that serve as a critical link between innate and adaptive immune system. SLE development and pathogenesis are associated with aberrant regulation in homeostasis and function of DCs, therefore, DC-targeted therapies have become of importance for treatment of SLE and autoimmune diseases. This review focus on the significance of DCs in promoting of SLE pathogenesis, and further discuss the clinical potential of DCs in SLE therapy. The insights on the roles of DCs in SLE will provide the improvement of treatment strategy for SLE patients.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Susceptibility , Lupus Erythematosus, Systemic/etiology , Lupus Erythematosus, Systemic/metabolism , Animals , Autoimmunity , Cell Communication/genetics , Cell Communication/immunology , Cell Plasticity/immunology , Combined Modality Therapy , Disease Management , Humans , Immune Tolerance , Lupus Erythematosus, Systemic/pathology , Lupus Erythematosus, Systemic/therapy , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Molecular Targeted Therapy , Treatment Outcome
18.
Cells ; 8(10)2019 10 21.
Article in English | MEDLINE | ID: mdl-31640263

ABSTRACT

Tolerogenic dendritic cells (tolDCs) are central players in the initiation and maintenance of immune tolerance and subsequent prevention of autoimmunity. Recent advances in treatment of autoimmune diseases including systemic lupus erythematosus (SLE) have focused on inducing specific tolerance to avoid long-term use of immunosuppressive drugs. Therefore, DC-targeted therapies to either suppress DC immunogenicity or to promote DC tolerogenicity are of high interest. This review describes details of the typical characteristics of in vivo and ex vivo tolDC, which will help to select a protocol that can generate tolDC with high functional quality for clinical treatment of autoimmune disease in individual patients. In addition, we discuss the recent studies uncovering metabolic pathways and their interrelation intertwined with DC tolerogenicity. This review also highlights the clinical implications of tolDC-based therapy for SLE treatment, examines the current clinical therapeutics in patients with SLE, which can generate tolDC in vivo, and further discusses on possibility and limitation on each strategy. This synthesis provides new perspectives on development of novel therapeutic approaches for SLE and other autoimmune diseases.


Subject(s)
Dendritic Cells/metabolism , Lupus Erythematosus, Systemic/metabolism , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Dendritic Cells/immunology , Humans , Immune Tolerance/immunology , Immune Tolerance/physiology , Lupus Erythematosus, Systemic/immunology
19.
Oral Dis ; 25(3): 812-821, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30614184

ABSTRACT

OBJECTIVES: Mechanical injury of dental pulp leads to root resorption by osteoclasts/odontoclasts. S100 proteins have been demonstrated to be involved in inflammatory processes and bone remodeling. This study aimed to investigate the effect of mechanical stress on S100A7 expression by human dental pulp cells (HDPCs) and the effect of S100A7 proteins on osteoclast differentiation. MATERIALS AND METHODS: Isolated HDPCs were stimulated with compressive loading (2 and 6 hr), or shear loading (2, 6, and 16 hr). S100 mRNA expression and S100A7 protein levels were determined by real-time PCR and ELISA, respectively. Osteoclast differentiation was analyzed using primary human monocytes. The differentiation and activity of osteoclasts were examined by TRAcP staining and dentine resorption. In addition, the expression of S100A7 was analyzed in pulp tissues obtained from orthodontically treated teeth. RESULTS: Compressive and shear mechanical stress significantly upregulated both mRNA and protein level of S100A7. Dental pulp tissues from orthodontically treated teeth exhibited higher S100A7mRNA levels compared to non-treated control teeth. S100A7 promoted osteoclast differentiation by primary human monocytes. Moreover, S100A7 significantly enhanced dentine resorption by these cells. CONCLUSIONS: Mechanical stress induced expression of S100A7 by human dental pulp cells and this may promote root resorption by inducing osteoclast differentiation and activity.


Subject(s)
Cell Differentiation , Dental Pulp/metabolism , Monocytes/physiology , S100 Calcium Binding Protein A7/genetics , S100 Calcium Binding Protein A7/metabolism , Stress, Mechanical , Cell Differentiation/drug effects , Cell Survival , Cells, Cultured , Dental Pulp/cytology , Dentin/metabolism , Humans , Osteoclasts , RNA, Messenger/metabolism , S100 Calcium Binding Protein A7/pharmacology , Up-Regulation
20.
J Oral Sci ; 60(4): 557-566, 2018 Dec 27.
Article in English | MEDLINE | ID: mdl-30429436

ABSTRACT

Mannan (mannosylated glycoproteins) in the outermost layer of the Candida cell wall may be the first molecules that interact with host dendritic cells (DCs) and activate immune responses that determine disease outcomes. However, little is known about how different mannan structures of common oral Candida species affect DC activation. The effects of heat-inactivated (HI) yeast cells and soluble mannan of Candida albicans, Candida parapsilosis, and Candida dubliniensis on bone marrow-derived DC (BMDC) responses were compared. HI Candida and the mannan exhibited different effects on BMDC activation and functions, which could be due to other carbohydrate compositions in the yeast cell wall. Among Candida mannan, the C. albicans mannan was the weakest stimulus and induced only interferon (IFN)-γ production. This suggests the possibility that C. albicans mannan may skew T helper (Th) responses from protective Th17 toward Th1. In contrast, C. parapsilosis mannan caused strong BMDC activation and high production of several proinflammatory cytokines which possibly promote hyperinflammation. Meanwhile, C. dubliniensis mannan induced moderate BMDC responses, which may correlate with its lower pathogenicity. Therefore, mannan of each Candida species play distinct roles in DC responses and may be involved in the immunopathogenesis and disease severity of oral candidiasis as well as other Candida infection.


Subject(s)
Candida/immunology , Cell Wall/immunology , Dendritic Cells/immunology , Mannans/immunology , Biomarkers/analysis , Bone Marrow Cells/immunology , Candida/pathogenicity , Candida albicans/immunology , Candida parapsilosis/immunology , Candidiasis, Oral/immunology , Candidiasis, Oral/microbiology , Cell Survival , Cells, Cultured , Cytokines/immunology , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Microscopy, Electron, Scanning , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...