Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
iScience ; 24(12): 103434, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34877494

ABSTRACT

Inflammatory responses are crucial for regeneration following peripheral nerve injury (PNI). PNI triggers inflammatory responses at the site of injury. The DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream effector stimulator of interferon genes (STING) sense foreign and self-DNA and trigger type I interferon (IFN) immune responses. We demonstrate here that following PNI, the cGAS/STING pathway is upregulated in the sciatic nerve of naive rats and dysregulated in old rats. In a nerve crush mouse model where STING is knocked out, myelin content in sciatic nerve is increased resulting in accelerated functional axon recovery. STING KO mice have lower macrophage number in sciatic nerve and decreased microglia activation in spinal cord 1 week post injury. STING activation regulated processing of colony stimulating factor 1 receptor (CSF1R) and microglia survival in vitro. Taking together, these data highlight a previously unrecognized role of STING in the regulation of nerve regeneration.

2.
Proc Natl Acad Sci U S A ; 114(47): 12448-12453, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29109273

ABSTRACT

The TGF-ß family ligands myostatin, GDF11, and activins are negative regulators of skeletal muscle mass, which have been reported to primarily signal via the ActRIIB receptor on skeletal muscle and thereby induce muscle wasting described as cachexia. Use of a soluble ActRIIB-Fc "trap," to block myostatin pathway signaling in normal or cachectic mice leads to hypertrophy or prevention of muscle loss, perhaps suggesting that the ActRIIB receptor is primarily responsible for muscle growth regulation. Genetic evidence demonstrates however that both ActRIIB- and ActRIIA-deficient mice display a hypertrophic phenotype. Here, we describe the mode of action of bimagrumab (BYM338), as a human dual-specific anti-ActRIIA/ActRIIB antibody, at the molecular and cellular levels. As shown by X-ray analysis, bimagrumab binds to both ActRIIA and ActRIIB ligand binding domains in a competitive manner at the critical myostatin/activin binding site, hence preventing signal transduction through either ActRII. Myostatin and the activins are capable of binding to both ActRIIA and ActRIIB, with different affinities. However, blockade of either single receptor through the use of specific anti-ActRIIA or anti-ActRIIB antibodies achieves only a partial signaling blockade upon myostatin or activin A stimulation, and this leads to only a small increase in muscle mass. Complete neutralization and maximal anabolic response are achieved only by simultaneous blockade of both receptors. These findings demonstrate the importance of ActRIIA in addition to ActRIIB in mediating myostatin and activin signaling and highlight the need for blocking both receptors to achieve a strong functional benefit.


Subject(s)
Activin Receptors, Type II/antagonists & inhibitors , Antibodies, Blocking/pharmacology , Antibodies, Monoclonal/pharmacology , Hypertrophy/chemically induced , Muscle, Skeletal/drug effects , Activin Receptors, Type II/metabolism , Activins/metabolism , Animals , Antibodies, Blocking/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Bone Morphogenetic Proteins/metabolism , Crystallography, X-Ray , Dose-Response Relationship, Drug , Growth Differentiation Factors/metabolism , HEK293 Cells , Humans , Hypertrophy/pathology , Male , Mice , Mice, SCID , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Myostatin/metabolism , Rats , Rats, Wistar , Recombinant Proteins/metabolism , Signal Transduction/drug effects , Wasting Syndrome/drug therapy , Wasting Syndrome/pathology
3.
Calcif Tissue Int ; 82(5): 383-91, 2008 May.
Article in English | MEDLINE | ID: mdl-18465073

ABSTRACT

Bone loss in the elderly is mainly caused by osteoclast-induced bone resorption thought to be causally linked to the decline in estrogen and testosterone levels in females and males. Recently, involvement of follicle stimulating-hormone (FSH) in this process has been suggested to explain in part the etiology of the disease in females, whereas its role in males has never been examined. In this study, the direct impact of FSH on bone mass of 16-week-old C57BL/6J male mice by either daily intermittent application of 6 or 60 mug/kg of FSH or continuous delivery via miniosmotic pump of a dose of 6 mug/kg over the course of a month was assessed. Femoral peripheral quantitative computed tomographic and microcomputed tomographic analyses at 0, 2, and 4 weeks of FSH-treated mice did not reveal any differences in cancellous and cortical bone compared to sham-treated mice. FSH functionality was verified by demonstrating cAMP induction and activation of a cAMP-response element-containing reporter cell line by FSH. Furthermore, osteoclastogenesis from human mononuclear cell precursors and from RAW 264.7 cells was not affected by FSH (3, 10, 30 ng/mL) compared to control. No direct effect of FSH on gene regulation was observed by Affymetrix Gene Array on RAW 264.7 cells. Lastly, no expression of FSH receptor (FSHR) mRNA or FSHR was observed by quantitative polymerase chain reaction and Western blot in either human male osteoclasts or RAW 264.7 cells. These data show that FSH does not appear to modulate male bone mass regulation in vivo and does not act directly on osteoclastogenesis in vitro.


Subject(s)
Femur/drug effects , Follicle Stimulating Hormone/pharmacology , Osteoclasts/drug effects , Adult , Animals , Blotting, Western , Cell Line , Cyclic AMP/biosynthesis , Cyclic AMP Response Element-Binding Protein/biosynthesis , Dose-Response Relationship, Drug , Femur/diagnostic imaging , Femur/metabolism , Gene Expression Regulation/drug effects , Humans , Infusion Pumps, Implantable , Infusions, Parenteral , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Osteoclasts/metabolism , RNA, Messenger/metabolism , Receptors, FSH/genetics , Receptors, FSH/metabolism , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL