Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
Front Insect Sci ; 4: 1360320, 2024.
Article in English | MEDLINE | ID: mdl-38638680

ABSTRACT

In insects and other animals, nutrition-mediated behaviors are modulated by communication between the brain and peripheral systems, a process that relies heavily on the insulin/insulin-like growth factor signaling pathway (IIS). Previous studies have focused on the mechanistic and physiological functions of insulin-like peptides (ILPs) in critical developmental and adult milestones like pupation or vitellogenesis. Less work has detailed the mechanisms connecting ILPs to adult nutrient-mediated behaviors related to survival and reproductive success. Here we briefly review the range of behaviors linked to IIS in insects, from conserved regulation of feeding behavior to evolutionarily derived polyphenisms. Where possible, we incorporate information from Drosophila melanogaster and other model species to describe molecular and neural mechanisms that connect nutritional status to behavioral expression via IIS. We identify knowledge gaps which include the diverse functional roles of peripheral ILPs, how ILPs modulate neural function and behavior across the lifespan, and the lack of detailed mechanistic research in a broad range of taxa. Addressing these gaps would enable a better understanding of the evolution of this conserved and widely deployed tool kit pathway.

3.
Integr Comp Biol ; 63(3): 808-824, 2023 09 15.
Article in English | MEDLINE | ID: mdl-36881719

ABSTRACT

Across diverse animal species, early-life experiences have lifelong impacts on a variety of traits. The scope of these impacts, their implications, and the mechanisms that drive these effects are central research foci for a variety of disciplines in biology, from ecology and evolution to molecular biology and neuroscience. Here, we review the role of early life in shaping adult phenotypes and fitness in bees, emphasizing the possibility that bees are ideal species to investigate variation in early-life experience and its consequences at both individual and population levels. Bee early life includes the larval and pupal stages, critical time periods during which factors like food availability, maternal care, and temperature set the phenotypic trajectory for an individual's lifetime. We discuss how some common traits impacted by these experiences, including development rate and adult body size, influence fitness at the individual level, with possible ramifications at the population level. Finally, we review ways in which human alterations to the landscape may impact bee populations through early-life effects. This review highlights aspects of bees' natural history and behavioral ecology that warrant further investigation with the goal of understanding how environmental disturbances threaten these vulnerable species.


Subject(s)
Physical Conditioning, Animal , Humans , Animals , Bees , Ecology , Temperature , Larva , Pupa
6.
Front Behav Neurosci ; 15: 660464, 2021.
Article in English | MEDLINE | ID: mdl-33967715

ABSTRACT

Early-life experiences have strong and long-lasting consequences for behavior in a surprising diversity of animals. Determining which environmental inputs cause behavioral change, how this information becomes neurobiologically encoded, and the functional consequences of these changes remain fundamental puzzles relevant to diverse fields from evolutionary biology to the health sciences. Here we explore how insects provide unique opportunities for comparative study of developmental behavioral plasticity. Insects have sophisticated behavior and cognitive abilities, and they are frequently studied in their natural environments, which provides an ecological and adaptive perspective that is often more limited in lab-based vertebrate models. A range of cues, from relatively simple cues like temperature to complex social information, influence insect behavior. This variety provides experimentally tractable opportunities to study diverse neural plasticity mechanisms. Insects also have a wide range of neurodevelopmental trajectories while sharing many developmental plasticity mechanisms with vertebrates. In addition, some insects retain only subsets of their juvenile neuronal population in adulthood, narrowing the targets for detailed study of cellular plasticity mechanisms. Insects and vertebrates share many of the same knowledge gaps pertaining to developmental behavioral plasticity. Combined with the extensive study of insect behavior under natural conditions and their experimental tractability, insect systems may be uniquely qualified to address some of the biggest unanswered questions in this field.

7.
Psychoneuroendocrinology ; 127: 105174, 2021 05.
Article in English | MEDLINE | ID: mdl-33647572

ABSTRACT

Chronic stress threatens an individual's capacity to maintain psychological and physiological homeostasis, but the molecular processes underlying the biological embedding of these experiences are not well understood. This is particularly true for marginalized groups, presenting a fundamental challenge to decreasing racial, economic, and gender-based health disparities. Physical and social environments influence genome function, including the transcriptional activity of core stress responsive genes. We studied the relationship between social experiences that are associated with systemic inequality (e.g., racial segregation, poverty, and neighborhood violence) and blood cell (leukocytes) gene expression, focusing on the activation of transcription factors (TF) critical to stress response pathways. The study used data from 68 women collected from a convenience sample in 2013 from the Southside of Chicago. Comparing single, low-income Black mothers living in neighborhoods with high levels of violence (self-reported and assessed using administrative police records) to those with low levels of violence we found no significant differences in expression of 51 genes associated with the Conserved Transcriptional Response to Adversity (CTRA). Using TELiS analysis of promoter TF-binding motif prevalence we found that mothers who self-reported higher levels of neighborhood stress showed greater expression of genes regulated by the glucocorticoid receptor (GR). These findings may reflect increased cortisol output from the hypothalamic-pituitary-adrenal (HPA) axis, or increased GR transcriptional sensitivity. Transcript origin analyses identified monocytes and dendritic cells as the primary cellular sources of gene transcripts up-regulated in association with neighborhood stress. The prominence of GR-related transcripts and the absence of sympathetic nervous system-related CTRA transcripts suggest that a subjective perception of elevated chronic neighborhood stress may be associated with an HPA-related defeat-withdrawal phenotype rather than a fight-or-flight phenotype. The defeat-withdrawal phenotype has been previously observed in animal models of severe, overwhelming threat. These results demonstrate the importance of studying biological embedding in diverse environments and communities, specifically marginalized populations such as low-income Black women.


Subject(s)
Black or African American , Residence Characteristics , Transcriptome , Violence , Female , Humans , Residence Characteristics/statistics & numerical data , Violence/statistics & numerical data
8.
Curr Opin Insect Sci ; 45: 84-90, 2021 06.
Article in English | MEDLINE | ID: mdl-33601060

ABSTRACT

Human environmental modifications have outpaced honey bees' ability to evolve adaptive regulation of foraging tactics, possibly including a tactic associated with extreme food shortage, honey robbing. Honey robbing is a high risk, high reward, and understudied honey bee tactic whereby workers attack and often kill neighboring colonies to steal honey. Humans have exacerbated the conditions that provoke such robbing and its consequences. We describe robbing as an individual-level and colony-level behavioral syndrome, implicating worker bees specialized for foraging, food processing, and defense. We discuss how colony signaling mechanisms could regulate this syndrome and then explore the ecological underpinnings of robbing-highlighting its unusual prevalence in the commonly managed Apis mellifera and outlining the conditions that provoke robbing. We advocate for studies that identify the cues that modulate this robbing syndrome. Additionally, studies that apply behavioral ecology modeling approaches to generate testable predictions about robbing could clarify basic bee biology and have practical implications for colony management.


Subject(s)
Adaptation, Biological , Bees/physiology , Honey , Human Activities , Animals , Climate Change , Feeding Behavior
9.
Sci Rep ; 9(1): 14642, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31601943

ABSTRACT

Gene expression changes resulting from social interactions may give rise to long term behavioral change, or simply reflect the activity of neural circuitry associated with behavioral expression. In honey bees, social cues broadly modulate aggressive behavior and brain gene expression. Previous studies suggest that expression changes are limited to contexts in which social cues give rise to stable, relatively long-term changes in behavior. Here we use a traditional beekeeping approach that inhibits aggression, smoke exposure, to deprive individuals of aggression-inducing olfactory cues and evaluate whether behavioral changes occur in absence of expression variation in a set of four biomarker genes (drat, cyp6g1/2, GB53860, inos) associated with aggression in previous studies. We also evaluate two markers of a brain hypoxic response (hif1α, hsf) to determine whether smoke induces molecular changes at all. We find that bees with blocked sensory perception as a result of smoke exposure show a strong, temporary inhibition of aggression relative to bees allowed to perceive normal social cues. However, blocking sensory perception had minimal impacts on aggression-relevant gene expression, althought it did induce a hypoxic molecular response in the brain. Results suggest that certain genes differentiate social cue-induced changes in aggression from long-term modulation of this phenotype.


Subject(s)
Aggression/physiology , Bees/physiology , Behavior, Animal/physiology , Brain/metabolism , Social Perception , Animals , Behavior Observation Techniques , Biomarkers/metabolism , Cues , Gene Expression Profiling , Gene Expression Regulation/physiology
10.
J Neurosci Res ; 97(8): 991-1003, 2019 08.
Article in English | MEDLINE | ID: mdl-31090236

ABSTRACT

Mitochondrial activity is highly dynamic in the healthy brain, and it can reflect both the signaling potential and the signaling history of neural circuits. Recent studies spanning invertebrates to mammals have highlighted a role for neural mitochondrial dynamics in learning and memory processes as well as behavior. In the current study, we investigate the interplay between biogenic amine signaling and neural energetics in the honey bee, Apis mellifera. In this species, aggressive behaviors are regulated by neural energetic state and biogenic amine titers, but it is unclear how these mechanisms are linked to impact behavioral expression. We show that brain mitochondrial number is highest in aggression-relevant brain regions and in individual bees that are most responsive to aggressive cues, emphasizing the importance of energetics in modulating this phenotype. We also show that the neural energetic response to alarm pheromone, an aggression inducing social cue, is activity dependent, modulated by the "fight or flight" insect neurotransmitter octopamine. Two other neuroactive compounds known to cause variation in aggression, dopamine, and serotonin, also modulate neural energetic state in aggression-relevant regions of the brain. However, the effects of these compounds on respiration at baseline and following alarm pheromone exposure are distinct, suggesting unique mechanisms underlying variation in mitochondrial respiration in these circuits. These results motivate new explanations for the ways in which biogenic amines alter sensory perception in the context of aggression. Considering neural energetics improves predictions about the regulation of complex and context-dependent behavioral phenotypes.


Subject(s)
Aggression/physiology , Bees/physiology , Biogenic Amines/metabolism , Cues , Mitochondria/metabolism , Neurons/metabolism , Animals , Citrate (si)-Synthase/metabolism , Dopamine/metabolism , Female , Octopamine/metabolism , Oxygen Consumption , Pheromones/administration & dosage , Serotonin/metabolism
11.
BMC Genomics ; 20(1): 1029, 2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31888487

ABSTRACT

BACKGROUND: Behavior reflects an organism's health status. Many organisms display a generalized suite of behaviors that indicate infection or predict infection susceptibility. We apply this concept to honey bee aggression, a behavior that has been associated with positive health outcomes in previous studies. We sequenced the transcriptomes of the brain, fat body, and midgut of adult sibling worker bees who developed as pre-adults in relatively high versus low aggression colonies. Previous studies showed that this pre-adult experience impacts both aggressive behavior and resilience to pesticides. We performed enrichment analyses on differentially expressed genes to determine whether variation in aggression resembles the molecular response to infection. We further assessed whether the transcriptomic signature of aggression in the brain is similar to the neuromolecular response to acute predator threat, exposure to a high-aggression environment as an adult, or adult behavioral maturation. RESULTS: Across all three tissues assessed, genes that are differentially expressed as a function of aggression significantly overlap with genes whose expression is modulated by a variety of pathogens and parasitic feeding. In the fat body, and to some degree the midgut, our data specifically support the hypothesis that low aggression resembles a diseased or parasitized state. However, we find little evidence of active infection in individuals from the low aggression group. We also find little evidence that the brain molecular signature of aggression is enriched for genes modulated by social cues that induce aggression in adults. However, we do find evidence that genes associated with adult behavioral maturation are enriched in our brain samples. CONCLUSIONS: Results support the hypothesis that low aggression resembles a molecular state of infection. This pattern is most robust in the peripheral fat body, an immune responsive tissue in the honey bee. We find no evidence of acute infection in bees from the low aggression group, suggesting the physiological state characterizing low aggression may instead predispose bees to negative health outcomes when they are exposed to additional stressors. The similarity of molecular signatures associated with the seemingly disparate traits of aggression and disease suggests that these characteristics may, in fact, be intimately tied.


Subject(s)
Animal Diseases/etiology , Bees/genetics , Behavior, Animal , Infections/veterinary , Transcriptome , Animals , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Models, Biological
12.
J Exp Biol ; 221(Pt 8)2018 04 25.
Article in English | MEDLINE | ID: mdl-29496782

ABSTRACT

Neuronal function demands high-level energy production, and as such, a decline in mitochondrial respiration characterizes brain injury and disease. A growing number of studies, however, link brain mitochondrial function to behavioral modulation in non-diseased contexts. In the honey bee, we show for the first time that an acute social interaction, which invokes an aggressive response, may also cause a rapid decline in brain mitochondrial bioenergetics. The degree and speed of this decline has only been previously observed in the context of brain injury. Furthermore, in the honey bee, age-related increases in aggressive tendency are associated with increased baseline brain mitochondrial respiration, as well as increased plasticity in response to metabolic fuel type in vitro Similarly, diet restriction and ketone body feeding, which commonly enhance mammalian brain mitochondrial function in vivo, cause increased aggression. Thus, even in normal behavioral contexts, brain mitochondria show a surprising degree of variation in function over both rapid and prolonged time scales, with age predicting both baseline function and plasticity in function. These results suggest that mitochondrial function is integral to modulating aggression-related neuronal signaling. We hypothesize that variation in function reflects mitochondrial calcium buffering activity, and that shifts in mitochondrial function signal to the neuronal soma to regulate gene expression and neural energetic state. Modulating brain energetic state is emerging as a critical component of the regulation of behavior in non-diseased contexts.


Subject(s)
Bees/physiology , Brain/metabolism , Energy Metabolism , Mitochondria/metabolism , Aggression/physiology , Animal Nutritional Physiological Phenomena , Animals , Bees/metabolism , Behavior, Animal/physiology , Brain/physiology , Ketone Bodies , Neurons/metabolism
13.
Nat Commun ; 9(1): 489, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29434301

ABSTRACT

Animal behavioural traits often covary with gene expression, pointing towards a genomic constraint on organismal responses to environmental cues. This pattern highlights a gap in our understanding of the time course of environmentally responsive gene expression, and moreover, how these dynamics are regulated. Advances in behavioural genomics explore how gene expression dynamics are correlated with behavioural traits that range from stable to highly labile. We consider the idea that certain genomic regulatory mechanisms may predict the timescale of an environmental effect on behaviour. This temporally minded approach could inform both organismal and evolutionary questions ranging from the remediation of early life social trauma to understanding the evolution of trait plasticity.


Subject(s)
Behavior, Animal , Gene Expression Regulation , Gene-Environment Interaction , Genetics, Behavioral , Animals , Biological Evolution , Evolution, Molecular , Genomics , Phenotype , Time Factors
14.
Glia ; 66(6): 1160-1175, 2018 06.
Article in English | MEDLINE | ID: mdl-28960551

ABSTRACT

Neuronal activity requires a vast amount of energy. Energy use in the brain is spatially and temporally dynamic, which reflects the changing activity of the neuronal circuits and might be important for modulating neuronal output. Much recent work has focused on understanding how brain glial cells take up nutrients from circulation and subsequently provide metabolic precursors to neurons. However, within the neurons, modulation of cellular metabolic pathway flux also regulates excitability and signaling. A coherent understanding of the links between energy availability and metabolism, neural signaling, and higher-level phenotypes like behavior requires a synthesis of the understanding of glial and neuronal metabolic dynamics. In the current review, we address this synthesis in the context of insect brain metabolism. Insects not only show evidence of a metabolic division of labor and plasticity in neural metabolism that closely resembles that observed in vertebrate species, there also seem to be direct links between brain metabolic dynamics and behavioral phenotypes. We summarize the current knowledge about the metabolic fuels available to the insect nervous system and how they are transported and distributed to the different neural cell types. We discuss the possibility of an ANLS-like metabolic division of labor between glial cells and neurons, and how it is regulated. We then discuss plasticity in flux through energy metabolic pathways in neurons, how flux is regulated, and how it influences neural signaling. We end by discussing how metabolic dynamics in the glia and neurons may interact to impact signaling.


Subject(s)
Behavior, Animal/physiology , Energy Metabolism , Insecta/metabolism , Neurons/metabolism , Animals , Models, Animal , Neuroglia/metabolism
15.
Front Zool ; 14: 16, 2017.
Article in English | MEDLINE | ID: mdl-28270855

ABSTRACT

BACKGROUND: In highly structured societies, individuals behave flexibly and cooperatively in order to achieve a particular group-level outcome. However, even in social species, environmental inputs can have long lasting effects on individual behavior, and variable experiences can even result in consistent individual differences and constrained behavioral flexibility. Despite the fact that such constraints on behavior could have implications for behavioral optimization at the social group level, few studies have explored how social experiences accumulate over time, and the mechanistic basis of these effects. In the current study, I evaluate how sequential social experiences affect individual and group level aggressive phenotypes, and individual brain gene expression, in the highly social honey bee (Apis mellifera). To do this, I combine a whole colony chronic predator disturbance treatment with a lab-based manipulation of social group composition. RESULTS: Compared to the undisturbed control, chronically disturbed individuals show lower aggression levels overall, but also enhanced behavioral flexibility in the second, lab-based social context. Disturbed bees display aggression levels that decline with increasing numbers of more aggressive, undisturbed group members. However, group level aggressive phenotypes are similar regardless of the behavioral tendencies of the individuals that make up the group, suggesting a combination of underlying behavioral tendency and negative social feedback influences the aggressive behaviors displayed, particularly in the case of disturbed individuals. An analysis of brain gene expression showed that aggression related biomarker genes reflect an individual's disturbance history, but not subsequent social group experience or behavioral outcomes. CONCLUSIONS: In highly social animals with collective behavioral phenotypes, social context may mask underlying variation in individual behavioral tendencies. Moreover, gene expression patterns may reflect behavioral tendency, while behavioral outcomes are further regulated by social cues perceived in real-time.

16.
Sci Rep ; 5: 15572, 2015 Oct 23.
Article in English | MEDLINE | ID: mdl-26493190

ABSTRACT

Early-life social experiences cause lasting changes in behavior and health for a variety of animals including humans, but it is not well understood how social information ''gets under the skin'' resulting in these effects. Adult honey bees (Apis mellifera) exhibit socially coordinated collective nest defense, providing a model for social modulation of aggressive behavior. Here we report for the first time that a honey bee's early-life social environment has lasting effects on individual aggression: bees that experienced high-aggression environments during pre-adult stages showed increased aggression when they reached adulthood relative to siblings that experienced low-aggression environments, even though all bees were kept in a common environment during adulthood. Unlike other animals including humans however, high-aggression honey bees were more, rather than less, resilient to immune challenge, assessed as neonicotinoid pesticide susceptibility. Moreover, aggression was negatively correlated with ectoparasitic mite presence. In honey bees, early-life social experience has broad effects, but increased aggression is decoupled from negative health outcomes. Because honey bees and humans share aspects of their physiological response to aggressive social encounters, our findings represent a step towards identifying ways to improve individual resiliency. Pre-adult social experience may be crucial to the health of the ecologically threatened honey bee.


Subject(s)
Aggression , Bees/physiology , Behavior, Animal , Animals , Bees/immunology
17.
Proc Natl Acad Sci U S A ; 111(50): 17929-34, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25453090

ABSTRACT

Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse (Mus musculus), stickleback fish (Gasterosteus aculeatus), and honey bee (Apis mellifera). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic "toolkits" that are used in independent evolutions of the response to social challenge in diverse taxa.


Subject(s)
Bees/physiology , Biological Evolution , Brain/physiology , Smegmamorpha/physiology , Social Behavior , Territoriality , Animals , Base Sequence , Bees/genetics , DNA Primers/genetics , Energy Metabolism/physiology , Genomics/methods , Immunohistochemistry , Mice , Microscopy, Fluorescence , Molecular Sequence Annotation , Molecular Sequence Data , Polymerase Chain Reaction , Sequence Analysis, RNA , Signal Transduction/physiology , Smegmamorpha/genetics , Species Specificity , Transcription Factors/metabolism
18.
Proc Natl Acad Sci U S A ; 111(34): 12533-7, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25092297

ABSTRACT

Despite ongoing high energetic demands, brains do not always use glucose and oxygen in a ratio that produces maximal ATP through oxidative phosphorylation. In some cases glucose consumption exceeds oxygen use despite adequate oxygen availability, a phenomenon known as aerobic glycolysis. Although metabolic plasticity seems essential for normal cognition, studying its functional significance has been challenging because few experimental systems link brain metabolic patterns to distinct behavioral states. Our recent transcriptomic analysis established a correlation between aggression and decreased whole-brain oxidative phosphorylation activity in the honey bee (Apis mellifera), suggesting that brain metabolic plasticity may modulate this naturally occurring behavior. Here we demonstrate that the relationship between brain metabolism and aggression is causal, conserved over evolutionary time, cell type-specific, and modulated by the social environment. Pharmacologically treating honey bees to inhibit complexes I or V in the oxidative phosphorylation pathway resulted in increased aggression. In addition, transgenic RNAi lines and genetic manipulation to knock down gene expression in complex I in fruit fly (Drosophila melanogaster) neurons resulted in increased aggression, but knockdown in glia had no effect. Finally, honey bee colony-level social manipulations that decrease individual aggression attenuated the effects of oxidative phosphorylation inhibition on aggression, demonstrating a specific effect of the social environment on brain function. Because decreased neuronal oxidative phosphorylation is usually associated with brain disease, these findings provide a powerful context for understanding brain metabolic plasticity and naturally occurring behavioral plasticity.


Subject(s)
Aggression/physiology , Bees/physiology , Behavior, Animal/physiology , Brain/physiology , Aggression/drug effects , Animals , Animals, Genetically Modified , Bees/drug effects , Bees/genetics , Behavior, Animal/drug effects , Benzoates/pharmacology , Brain/drug effects , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Gene Knockdown Techniques , Genes, Insect , Glucose/metabolism , Hydrocarbons, Chlorinated/pharmacology , Neurons/metabolism , Oxidative Phosphorylation/drug effects , Pyrazoles/pharmacology , Social Behavior , Social Environment
19.
Anim Behav ; 92: 263-270, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24954950

ABSTRACT

Researchers studying the adaptive significance of behaviour typically assume that genetic mechanisms will not inhibit evolutionary trajectories, an assumption commonly known as the 'phenotypic gambit'. Although the phenotypic gambit continues to be a useful heuristic for behavioural ecology, here we discuss how genomic methods provide new tools and conceptual approaches that are relevant to behavioural ecology. We first describe how the concept of a genetic toolkit for behaviour can allow behavioural ecologists to synthesize both genomic and ecological information when assessing behavioural adaptation. Then we show how gene expression profiles can be viewed as complex phenotypic measurements, used to (1) predict behaviour, (2) evaluate phenotypic plasticity and (3) devise methods to manipulate behaviour in order to test adaptive hypotheses. We propose that advances in genomics and bioinformatics may allow researchers to overcome some of the logistical obstacles that motivated the inception of the phenotypic gambit. Behavioural ecology and genomics are mutually informative, providing potential synergy that could lead to powerful advances in the field of animal behaviour.

20.
Behav Ecol Sociobiol ; 67(4): 529-540, 2013 Apr.
Article in English | MEDLINE | ID: mdl-27616808

ABSTRACT

The risk of disease transmission can affect female mating rate, and thus sexual conflict. Furthermore, the interests of a sexually transmitted organism may align or diverge with those of either sex, potentially making the disease agent a third participant in the sexual arms race. In Drosophila melanogaster, where sexual conflict over female mating rate is well established, we investigated how a common, non-lethal virus (sigma virus) might affect this conflict. We gave uninfected females the opportunity to copulate twice in no-choice trials: either with two uninfected males, or with one male infected with sigma virus followed by an uninfected male. We assessed whether females respond behaviorally to male infection, determined whether male infection affects either female or male reproductive success, and measured offspring infection rates. Male infection status did not influence time to copulation, or time to re-mating. However, male infection did affect male reproductive success: first males sired a significantly greater proportion of offspring, as well as more total offspring, when they were infected with sigma virus. Thus viral infection may provide males an advantage in sperm competition, or, possibly, females may preferentially use infected sperm. We found no clear costs of infection in terms of offspring survival. Viral reproductive success (the number of infected offspring) was strongly correlated with male reproductive success. Further studies are needed to demonstrate whether virus-induced changes in reproductive success affect male and female lifetime fitness, and whether virus-induced changes are under male, female, or viral control.

SELECTION OF CITATIONS
SEARCH DETAIL