Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oecologia ; 199(3): 579-587, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35804249

ABSTRACT

One of the main aspects associated with the diversity in animal colour is the variation in melanization levels. In ectotherms, melanism can be advantageous in aiding thermoregulation through heat absorption. Darker bodies may also serve as a shield from harmful UV-B radiation. Melanism may also confer protection against parasites and predators through improving immunity responses and camouflage in regions with high precipitation, with complex and shaded vegetations and greater diversity of pathogens and parasites. We studied melanism evolution in the globally distributed ant genus Pheidole under the pressures of temperature, UV-B radiation and precipitation, while considering the effects of body size and nest habit, traits that are commonly overlooked. More importantly, we account for worker caste polymorphism, which is marked by distinct roles and behaviours. We revealed for the first time distinct evolutionary trajectories for each worker subcaste. As expected, major workers from species inhabiting locations with lower temperatures and higher precipitation tend to be more melanised. Curiously, we show a slight trend where minor workers of larger species also tend to have darker bodies when inhabiting regions with higher precipitation. Lastly, we did not find evidence for the effects of UV-B radiation and nest habit in the lightness variation of workers. Our paper explores the evolution of ant melanization considering a marked ant worker polymorphism and a wide range of ecological factors. We discuss our findings under the light of the Thermal Melanism Hypothesis, the Photoprotection Hypothesis and the Gloger's Rule.


Subject(s)
Ants , Melanosis , Animals , Body Size , Climate , Temperature
2.
Zookeys ; (726): 25-77, 2018.
Article in English | MEDLINE | ID: mdl-29430205

ABSTRACT

The genus Dendropsophus is one of the most speciose among Neotropical anurans and its number of described species is increasing. Herein, molecular, morphological, and bioacoustic evidence are combined to assess species limits within D. parviceps, a widely distributed species in the Amazon Basin. Phylogenetic relationships were assessed using 3040 bp sequences of mitochondrial DNA, genes 12S, ND1, and CO1. The phylogeny shows three well-supported clades. Bioacoustic and morphological divergence is congruent with those clades demonstrating that Dendropsophus parviceps is a species complex. Dendropsophus parvicepssensu stricto occurs in the Amazon basin of Ecuador, northern Peru, southern Colombia and northwestern Brazil. It is sister to two previously undescribed species, D. kubrickisp. n. from central Peru and D. kamagarinisp. n. from southern Peru, northeastern Bolivia, and northwestern Brazil. Genetic distances (uncorrected p, gene 12S) between D. parviceps and the new species is 3 to 4%. Dendropsophus kamagarinisp. n. can be distinguished from D. parviceps by having a prominent conical tubercle on the distal edge of the upper eyelid (tubercle absent in D. parviceps). Dendropsophus kubrickisp. n. differs from D. parviceps by having scattered low tubercles on the upper eyelids (smooth in D. parviceps). Dendropsophus parviceps and both new species differ from all their congeners by their small size (adult maximum SVL = 28.39 mm in females, 22.73 mm in males) and by having a bright orange blotch on the hidden areas of the shanks and under arms. The advertisement call of the two new species has lower dominant frequency relative to D. parviceps. Probable speciation modes are discussed. Available evidence indicates that ecological speciation along an elevation gradient is unlikely in this species complex.

SELECTION OF CITATIONS
SEARCH DETAIL
...