Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Steroid Biochem Mol Biol ; 185: 118-136, 2019 01.
Article in English | MEDLINE | ID: mdl-30125657

ABSTRACT

Calcitriol analogs have shown promising potential as compounds to be used in cancer chemotherapy. This report presents the synthesis of a novel vitamin D3 derivative with an amide and a carboxyl group in its side chain, called ML-344. In addition, we report its in vitro antitumor activity and its in vivo calcemic effects. We demonstrate that the analog decreases cell viability and retards cell migration of different breast, glioblastoma and head and neck cancer cell lines. Additionally, unlike calcitriol, ML-344 does not display citotoxicity to the murine non-malignant mammary cells and human astrocytes. In concordance with the antimigratory effects found in breast cancer cells, ML-344 decreased the invasive capacity and induced a rearrangement of the actin cytoskeleton in the LM3 breast cancer cell line. In relation to the in vivo studies, the analog did not cause hypercalcemic effects in CF1 mice administered daily at 5 µg/Kg of body weight during a period of 264 h. Finally, computational studies were performed to evaluate the potential binding of the analog to the vitamin D receptor and the in silico assays showed that ML-344 is able to bind to VDR with interesting particularities and greater affinity than calcitriol. Altogether, these results suggest that ML-344 has a promising potential as an antitumor agent with a differential effect between tumor and non-malignant cells.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Calcitriol/analogs & derivatives , Calcitriol/pharmacology , Glioblastoma/drug therapy , Head and Neck Neoplasms/drug therapy , Receptors, Calcitriol/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Astrocytes/drug effects , Calcitriol/chemical synthesis , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Humans , Male , Mice
2.
J Steroid Biochem Mol Biol ; 163: 193-205, 2016 10.
Article in English | MEDLINE | ID: mdl-27208626

ABSTRACT

Vitamin D has been shown to display a wide variety of antitumour effects, but their therapeutic use is limited by its severe side effects. We have designed and synthesized a Gemini vitamin D analogue of calcitriol (UVB1) which has shown to display antineoplastic effects on different cancer cell lines without causing hypercalcemia. The aim of this work has been to investigate, by employing in silico, in vitro, and in vivo assays, whether UVB1 inhibits human colorectal carcinoma progression. We demonstrated that UVB1 induces apoptotic cell death and retards cellular migration and invasion of HCT116 colorectal carcinoma cells. Moreover, the analogue reduced the tumour volume in vivo, and modulated the expression of Bax, E-cadherin and nuclear ß-catenin in tumour animal tissues without producing toxic effects. In silico analysis showed that UVB1 exhibits greater affinity for the ligand binding domain of vitamin D receptor than calcitriol, and that several characteristics in the three-dimensional conformation of VDR may influence the biological effects. These results demonstrate that the Gemini vitamin D analogue affects the growth of the colorectal cancer and suggest that UVB1 is a potential chemotherapeutic agent for treatment of this disease.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic , Receptors, Calcitriol/chemistry , Vitamin D/analogs & derivatives , Vitamin D/pharmacology , Animals , Antigens, CD , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Binding Sites , Cadherins/genetics , Cadherins/metabolism , Cell Movement/drug effects , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Disease Progression , HCT116 Cells , Humans , Ligands , Mice , Mice, Nude , Molecular Docking Simulation , Protein Binding , Protein Interaction Domains and Motifs , Receptors, Calcitriol/antagonists & inhibitors , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Vitamin D/chemistry , Xenograft Model Antitumor Assays , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , beta Catenin/genetics , beta Catenin/metabolism
3.
Arch Pharm (Weinheim) ; 348(5): 315-29, 2015 May.
Article in English | MEDLINE | ID: mdl-25864390

ABSTRACT

The active form of vitamin D3, 1α,25(OH)2D3, plays a major role in maintaining calcium/phosphate homeostasis. In addition, it is a potent antiproliferative and pro-differentiating agent. Unfortunately, it usually causes hypercalcemia in vivo when effective antitumour doses are used. It has therefore been found necessary to synthesise new analogues that retain or even increase the antitumour effects but preclude hypercalcemia. This report presents the synthesis of a novel Gemini vitamin D analogue (UVB1) and its biological evaluation. We demonstrate that this compound has potent antitumoural effects over a wide panel of tumour cell lines while showing lack of hypercalcemic activity and toxicity effects in in vivo assays.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Hypercalcemia/chemically induced , Neoplasms/drug therapy , Vitamin D/analogs & derivatives , Vitamin D/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/toxicity , Calcium/blood , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Design , Female , Humans , Hypercalcemia/blood , Inhibitory Concentration 50 , Male , Mice , Mice, Nude , Molecular Structure , Neoplasms/pathology , Structure-Activity Relationship , Time Factors , Vitamin D/chemical synthesis , Vitamin D/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...