Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(23)2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34884955

ABSTRACT

Proliferative retinopathies produces an irreversible type of blindness affecting working age and pediatric population of industrialized countries. Despite the good results of anti-VEGF therapy, intraocular and systemic complications are often associated after its intravitreal use, hence novel therapeutic approaches are needed. The aim of the present study is to test the effect of the AS1411, an antiangiogenic nucleolin-binding aptamer, using in vivo, ex vivo and in vitro models of angiogenesis and propose a mechanistic insight. Our results showed that AS1411 significantly inhibited retinal neovascularization in the oxygen induced retinopathy (OIR) in vivo model, as well as inhibited branch formation in the rat aortic ex vivo assay, and, significantly reduced proliferation, cell migration and tube formation in the HUVEC in vitro model. Importantly, phosphorylated NCL protein was significantly abolished in HUVEC in the presence of AS1411 without affecting NFκB phosphorylation and -21 and 221-angiomiRs, suggesting that the antiangiogenic properties of this molecule are partially mediated by a down regulation in NCL phosphorylation. In sum, this new research further supports the NCL role in the molecular etiology of pathological angiogenesis and identifies AS1411 as a novel anti-angiogenic treatment.


Subject(s)
Aptamers, Nucleotide/administration & dosage , Oligodeoxyribonucleotides/administration & dosage , Oxygen/adverse effects , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Retinal Neovascularization/drug therapy , Animals , Aptamers, Nucleotide/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Gene Expression Regulation/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Intravitreal Injections , Mice , MicroRNAs/genetics , Oligodeoxyribonucleotides/pharmacology , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/genetics , Phosphorylation/drug effects , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/genetics , Retinal Neovascularization/chemically induced , Retinal Neovascularization/genetics , Retinal Neovascularization/metabolism , Nucleolin
2.
J Ocul Pharmacol Ther ; 37(5): 261-276, 2021 06.
Article in English | MEDLINE | ID: mdl-33691483

ABSTRACT

Purpose: Safety and toxicity evaluation of a novel, liposome-encapsulated rapamycin formulation, intended for autoimmune ocular disorders. Methods: The formulation was assessed by micronucleus polychromatic erythrocyte production, irritability by Hen's Egg Test-Chorioallantoic Membrane (HET CAM), sterility, and pyrogenicity testing. Subconjunctival (SCJ) and intravitreal (IVT) administration of the formulation were performed to evaluate subacute and acute toxicity, respectively. Differences between groups in biochemical and hematological parameters were evaluated by analysis of variance and t-tests. Numeric score was assigned to histopathological classification. Electroretinography (ERG) testing was also performed. Data were analyzed by a 1 way no parametric Kruskal-Wallis and the Mann-Whitney tests. Significance was considered when P < 0.05. Results: No significant toxicity directly related to the preparation was detected. Micronucleus count, mucous irritation score, and pyrogenicity results were negative. Pathology demonstrated no damage related to the formulation after SCJ injection. After IVT injection, only lens injury associated with technique was observed. Retinal function was also conserved in ERG. Conclusions: The preparation evaluated offers a good toxicity and safety profile when injected in a SCJ or IVT manner in an animal model. A clinical trial conducted in humans is highly warranted, as it could reveal an alternative immunosuppressive treatment for ophthalmological immune-mediated pathologies.


Subject(s)
Autoimmune Diseases/drug therapy , Eye Diseases/immunology , Immunosuppressive Agents/pharmacokinetics , Liposomes/pharmacokinetics , Sirolimus/pharmacokinetics , Animals , Chorioallantoic Membrane/metabolism , Conjunctiva/metabolism , Disease Models, Animal , Drug Compounding , Electroretinography/methods , Erythrocytes/drug effects , Erythrocytes/metabolism , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/toxicity , Intravitreal Injections , Liposomes/administration & dosage , Liposomes/therapeutic use , Male , Mice , Micronucleus Tests , Rabbits , Retina/drug effects , Retina/physiopathology , Safety , Sirolimus/administration & dosage , Sirolimus/toxicity
3.
AAPS PharmSciTech ; 21(7): 264, 2020 Sep 27.
Article in English | MEDLINE | ID: mdl-32980937

ABSTRACT

Although mebendazole (MBZ) has demonstrated antitumor activity in glioblastoma models, the drug has low aqueous solubility and therefore is poorly absorbed. Considering that other strategies are needed to improve its bioavailability, the current study was aimed to develop and evaluate novel microemulsions of MBZ (MBZ-NaH ME) for intranasal administration. MBZ raw materials were characterized by FTIR, DSC, and XDP. Subsequently, the raw material that contained mainly polymorph C was selected to prepare microemulsions. Two different oleic acid (OA) systems were selected. Formulation A was composed of OA and docosahexaenoic acid (3:1% w/w), while formulation B was composed of OA and Labrafil M2125 (1:1% w/w). Sodium hyaluronate (NaH) at 0.1% was selected as a mucoadhesive agent. MBZ MEs showed a particle size of 209 nm and 145 nm, respectively, and the pH was suitable for nasal formulations (4.5-6.5). Formulation B, which showed the best solubility and rheological behavior, was selected for intranasal evaluation. The nasal toxicity study revealed no damage in the epithelium. Furthermore, formulation B improved significantly the median survival time in the orthotopic C6 rat model compared to the control group. Moreover, NIRF signal intensity revealed a decrease in tumor growth in the treated group with MBZ-MaH ME, which was confirmed by histologic examinations. Results suggest that the intranasal administration of mebendazole-loaded microemulsion might be appropriated for glioblastoma treatment. Graphical abstract.


Subject(s)
Antineoplastic Agents/administration & dosage , Brain Neoplasms/drug therapy , Emulsions/chemistry , Glioblastoma/drug therapy , Mebendazole/administration & dosage , Administration, Intranasal , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Biological Availability , Male , Mebendazole/pharmacokinetics , Mebendazole/therapeutic use , Particle Size , Rats , Rats, Sprague-Dawley , Solubility , Water/chemistry
4.
Immunopharmacol Immunotoxicol ; 41(1): 140-149, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30714433

ABSTRACT

Context: Influenza is a severe, life-threatening viral disease that can be prevented by vaccination. However, the anti-influenza human vaccine failed to show the required efficacy both in infants under 5 years old and in the elder population, who are among those with the highest risk of developing severe complications after influenza infection. Therefore, it is of high importance to improve the vaccine efficacy and ensure its safety in these susceptible populations. GK-1, a novel 18-aa peptide adjuvant, has been proved to increase the immunogenicity of the human influenza vaccine in both young and aged mice. Objective: A preclinical study of the toxicity profile of GK-1 following the World Health Organization guidelines to support its use was herein conducted. Material and methods: GK-1 was synthetically produced following Good Manufacturing Practices. The toxicological evaluation of GK-1 peptide was performed in rats after repeated dose-ranging trials by the subcutaneous route. The mutagenic potential of GK-1 was assessed by the micronucleus, chromosomal aberration, and Ames tests, in accordance with OECD Guidelines. Results: GK-1 did not show toxic effects at doses up to 12.5mg/kg, corresponding to 25 times the dose intended for human use. No indications of mutagenic potential were observed. GK-1 after dermal administration was well tolerated locally. Conclusion: The efficacy of GK-1 to improve influenza vaccine protection, along with the absence of toxicity and mutagenicity, as reported herein, support the evaluation of this peptide in a clinical trial as a novel adjuvant for human use.


Subject(s)
Adjuvants, Immunologic/toxicity , Chromosome Aberrations/drug effects , DNA Damage , Influenza Vaccines/immunology , Peptides, Cyclic/toxicity , Animals , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Female , Humans , Influenza, Human/prevention & control , Injections, Subcutaneous , Male , Mutagenicity Tests , Peptides, Cyclic/immunology , Rats, Wistar , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics , Toxicity Tests, Chronic
5.
Biomed Res Int ; 2017: 9758982, 2017.
Article in English | MEDLINE | ID: mdl-28293641

ABSTRACT

Inulin-type fructans are polymers of fructose molecules and are known for their capacity to enhance absorption of calcium and magnesium, to modulate gut microbiota and energy metabolism, and to improve glycemia. We evaluated and compared the effects of Chicory inulin "Synergy 1®" and inulin from Mexican agave "Metlin®" in two experimental models of colon cancer and bone calcium metabolism in mice and rats. Inulins inhibited the development of dextran sulfate sodium-induced colitis and colon cancer in mice; these fructans reduced the concentration of tumor necrosis factor alpha and prevented the formation of intestinal polyps, villous atrophy, and lymphoid hyperplasia. On the other hand, inulin treatments significantly increased bone densitometry (femur and vertebra) in ovariectomized rats without altering the concentration of many serum biochemical parameters and urinary parameters. Histopathology results were compared between different experimental groups. There were no apparent histological changes in rats treated with inulins and a mixture of inulins-isoflavones. Our results showed that inulin-type fructans have health-promoting properties related to enhanced calcium absorption, potential anticancer properties, and anti-inflammatory effects. The use of inulin as a prebiotic can improve health and prevent development of chronic diseases such as cancer and osteoporosis.


Subject(s)
Calcium, Dietary/metabolism , Colonic Neoplasms/drug therapy , Fructans/chemistry , Prebiotics , Agave , Animals , Bone and Bones/drug effects , Densitometry , Dietary Supplements , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Intestinal Absorption , Inulin/chemistry , Male , Mice , Mice, Inbred BALB C , Phytotherapy , Plant Extracts/chemistry , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...