Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Div ; 18(1): 6, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37122033

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TBNC) is an aggressive breast cancer subtype with a poor prognosis. Shugoshin-1 (SGO1) protects chromatids from early separation. Previous studies from our group have demonstrated that transient SGO1 downregulation suppresses early stages of metastasis (the epithelial-to-mesenchymal transition, or EMT, cell invasion, and cell migration) in TNBC cells. Thus, the inhibition of SGO1 activity may represent a potential therapeutic intervention against cancers that progress to metastasis. Therefore, we aimed to investigate the effects of sustained shRNA-mediated SGO1 downregulation on tumor growth and metastasis in TBNC. To that end, female NOD-SCID Gamma (NSG) mice were injected with 2.5 × 106 shRNA Control (n = 10) or shRNA SGO1 (n = 10) MDA-MB-231 cells. After eight weeks, the number of mice with metastasis to the lymph nodes was calculated. Primary and metastatic tumors, as well as lung and liver tissue, were harvested, measured, sectioned, and stained with hematoxylin and eosin (H&E) stain. RESULTS: Tumor growth and metastasis to the lymph nodes and lungs were significantly reduced in the shRNA SGO1-treated mice group, while metastasis to the liver tends to be lower in cells with downregulated SGO1, but it did not reach statistical significance. Furthermore, sustained SGO1 downregulation significantly reduced cell proliferation, cell migration, and invasion which correlated with lower levels of Snail, Slug, MMP2, MMP3, and MMP9. CONCLUSION: The supression of SGO1 activity in TNBC harboring dysregulated expression of SGO1 may be a potential target for preventing breast cancer growth and metastasis.

2.
Cell Div ; 17(1): 6, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494865

ABSTRACT

Molecular epidemiology evidence indicates racial and ethnic differences in the aggressiveness and survival of breast cancer. Hispanics/Latinas (H/Ls) and non-Hispanic Black women (NHB) are at higher risk of breast cancer (BC)-related death relative to non-Hispanic white (NHW) women in part because they are diagnosed with hormone receptor-negative (HR) subtype and at higher stages. Since the cell cycle is one of the most commonly deregulated cellular processes in cancer, we propose that the mitotic kinases TTK (or Mps1), TBK1, and Nek2 could be novel targets to prevent breast cancer progression among NHBs and H/Ls. In this study, we calculated levels of TTK, p-TBK1, epithelial (E-cadherin), mesenchymal (Vimentin), and proliferation (Ki67) markers through immunohistochemical (IHC) staining of breast cancer tissue microarrays (TMAs) that includes samples from 6 regions in the Southeast of the United States and Puerto Rico -regions enriched with NHB and H/L breast cancer patients. IHC analysis showed that TTK, Ki67, and Vimentin were significantly expressed in triple-negative (TNBC) tumors relative to other subtypes, while E-cadherin showed decreased expression. TTK correlated with all of the clinical variables but p-TBK1 did not correlate with any of them. TCGA analysis revealed that the mRNA levels of multiple mitotic kinases, including TTK, Nek2, Plk1, Bub1, and Aurora kinases A and B, and transcription factors that are known to control the expression of these kinases (e.g. FoxM1 and E2F1-3) were upregulated in NHBs versus NHWs and correlated with higher aneuploidy indexes in NHB, suggesting that these mitotic kinases may be future novel targets for breast cancer treatment in NHB women.

3.
Exp Biol Med (Maywood) ; 246(19): 2057-2071, 2021 10.
Article in English | MEDLINE | ID: mdl-34365840

ABSTRACT

E2F3 is a transcription factor that may initiate tumorigenesis if overexpressed. Previously, we demonstrated that E2F3 mRNA is overexpressed in breast cancer and that E2F3 overexpression results in centrosome amplification and unregulated mitosis, which can promote aneuploidy and chromosome instability to initiate and sustain tumors. Further, we demonstrated that E2F3 leads to overexpression of the mitotic regulator Shugoshin-1, which until recently had unknown roles in cancer. This study aims to evaluate the roles of E2F3 and Shugoshin-1 in breast cancer metastatic potential. Here we demonstrated that E2F3 and Shugoshin-1 silencing leads to reduced cell invasion and migration in two mesenchymal triple-negative breast cancer (TNBC) cell lines (MDA-MB-231 and Hs578t). Moreover, E2F3 and Shugoshin-1 modulate the expression of epithelial-to-mesenchymal transition-associated genes such as Snail, E-Cadherin, and multiple matrix metalloproteinases. Furthermore, E2F3 depletion leads to reductions in tumor growth and metastasis in NOD-scid Gamma mice. Results from this study suggest a key role for E2F3 and a novel role for Shugoshin-1 in metastatic progression. These results can further help in the improvement of TNBC targeted therapies by interfering with pathways that intersect with the E2F3 and Shugoshin-1 signaling pathways.


Subject(s)
Cell Movement/genetics , E2F3 Transcription Factor/genetics , Epithelial-Mesenchymal Transition/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Male , Mice , Mice, SCID , Signal Transduction/genetics
4.
Sci Rep ; 11(1): 9016, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33907253

ABSTRACT

Nek2 (NIMA-related kinase 2) is a serine/threonine-protein kinase that localizes to centrosomes and kinetochores, controlling centrosome separation, chromosome attachments to kinetochores, and the spindle assembly checkpoint. These processes prevent centrosome amplification (CA), mitotic dysfunction, and chromosome instability (CIN). Our group and others have suggested that Nek2 maintains high levels of CA/CIN, tumor growth, and drug resistance. We identified that Nek2 overexpression correlates with poor survival of breast cancer. However, the mechanisms driving these phenotypes are unknown. We now report that overexpression of Nek2 in MCF10A cells drives CA/CIN and aneuploidy. Besides, enhanced levels of Nek2 results in larger 3D acinar structures, but could not initiate tumors in a p53+/+ or a p53-/- xenograft model. Nek2 overexpression induced the epithelial-to-mesenchymal transition (EMT) while its downregulation reduced the expression of the mesenchymal marker vimentin. Furthermore, either siRNA-mediated downregulation or INH6's chemical inhibition of Nek2 in MDA-MB-231 and Hs578t cells showed important EMT changes and decreased invasion and migration. We also showed that Slug and Zeb1 are involved in Nek2 mediated EMT, invasion, and migration. Besides its role in CA/CIN, Nek2 contributes to breast cancer progression through a novel EMT mediated mechanism.


Subject(s)
Centrosome/metabolism , Epithelial-Mesenchymal Transition , NIMA-Related Kinases/metabolism , Triple Negative Breast Neoplasms/enzymology , Acinar Cells/pathology , Aneuploidy , Animals , Carcinogenesis , Cell Line, Tumor , Cell Movement , Chromosomal Instability , Epithelial Cells/pathology , Female , Humans , Mice , Neoplasm Invasiveness , Snail Family Transcription Factors/metabolism , Survival Analysis , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
5.
Exp Biol Med (Maywood) ; 246(9): 1036-1044, 2021 05.
Article in English | MEDLINE | ID: mdl-33601912

ABSTRACT

Biological therapies against breast cancer patients with tumors positive for the estrogen and progesterone hormone receptors and Her2 amplification have greatly improved their survival. However, to date, there are no effective biological therapies against breast cancers that lack these three receptors or triple-negative breast cancers (TNBC). TNBC correlates with poor survival, in part because they relapse following chemo- and radio-therapies. TNBC is intrinsically aggressive since they have high mitotic indexes and tend to metastasize to the central nervous system. TNBCs are more likely to display centrosome amplification, an abnormal phenotype that results in defective mitotic spindles and abnormal cytokinesis, which culminate in aneuploidy and chromosome instability (known causes of tumor initiation and chemo-resistance). Besides their known role in cell cycle control, mitotic kinases have been also studied in different types of cancer including breast, especially in the context of epithelial-to-mesenchymal transition (EMT). EMT is a cellular process characterized by the loss of cell polarity, reorganization of the cytoskeleton, and signaling reprogramming (upregulation of mesenchymal genes and downregulation of epithelial genes). Previously, we and others have shown the effects of mitotic kinases like Nek2 and Mps1 (TTK) on EMT. In this review, we focus on Aurora A, Aurora B, Bub1, and highly expressed in cancer (Hec1) as novel targets for therapeutic interventions in breast cancer and their effects on EMT. We highlight the established relationships and interactions of these and other mitotic kinases, clinical trial studies involving mitotic kinases, and the importance that represents to develop drugs against these proteins as potential targets in the primary care therapy for TNBC.


Subject(s)
Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Epithelial-Mesenchymal Transition/physiology , Protein Kinases/metabolism , Animals , Female , Humans , Mitosis/physiology
6.
Biochim Biophys Acta Mol Cell Res ; 1868(3): 118929, 2021 03.
Article in English | MEDLINE | ID: mdl-33310066

ABSTRACT

Error-free progression through mitosis is critical for proper cell division and accurate distribution of the genetic material. The anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase regulates the progression from metaphase to anaphase and its activation is controlled by the cofactors Cdc20 and Cdh1. Additionally, genome stability is maintained by the spindle assembly checkpoint (SAC), which monitors proper attachment of chromosomes to spindle microtubules prior to cell division. We had shown a role for Tank Binding Kinase 1 (TBK1) in microtubule dynamics and mitosis and here we describe a novel role of TBK1 in regulating SAC in breast and lung cancer cells. TBK1 interacts with and phosphorylates Cdc20 and Cdh1 and depletion of TBK1 elevates SAC components. TBK1 inhibition increases the association of Cdc20 with APC/C and BubR1 indicating inactivation of APC/C; similarly, interaction of Cdh1 with APC/C is also enhanced. TBK1 and TTK inhibition reduces cell viability and enhances centrosome amplification and micronucleation. These results indicate that alterations in TBK1 will impede mitotic progression and combining TBK1 inhibitors with other regulators of mitosis might be effective in eliminating cancer cells.


Subject(s)
Antigens, CD/metabolism , Breast Neoplasms/metabolism , Cdc20 Proteins/metabolism , Cdh1 Proteins/metabolism , Lung Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism , A549 Cells , Anaphase-Promoting Complex-Cyclosome/metabolism , Breast Neoplasms/genetics , Cell Line, Tumor , Female , Gene Knockdown Techniques , Humans , Lung Neoplasms/genetics , M Phase Cell Cycle Checkpoints , Mitosis , Phosphorylation , Protein Serine-Threonine Kinases/genetics
7.
Oncotarget ; 8(44): 77649-77672, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-29100415

ABSTRACT

The E2F1, E2F2, and E2F3a transcriptional activators control proliferation. However, how the E2F activators regulate mitosis to maintain genomic integrity is unclear. Centrosome amplification (CA) and unregulated spindle assembly checkpoint (SAC) are major generators of aneuploidy and chromosome instability (CIN) in cancer. Previously, we showed that overexpression of single E2F activators induced CA and CIN in mammary epithelial cells, and here we show that combined overexpression of E2F activators did not enhance CA. Instead, the E2F activators elevated expression of multiple mitotic regulators, including Sgo1, Nek2, Hec1, BubR1, and Mps1/TTK. cBioPortal analyses of the TCGA database showed that E2F overexpression in lobular invasive breast tumors correlates with overexpression of multiple regulators of chromosome segregation, centrosome homeostasis, and the SAC. Kaplan-Meier plots identified correlations between individual or combined overexpression of E2F1, E2F3a, Mps1/TTK, Nek2, BubR1, or Hec1 and poor overall and relapse-free survival of breast cancer patients. In MCF10A normal mammary epithelial cells co-overexpressing E2Fs, transient Sgo1 knockdown induced CA, high percentages of premature sister chromatid separation, chromosome losses, increased apoptosis, and decreased cell clonogenicity. BubR1 silencing resulted in chromosome losses without CA, demonstrating that Sgo1 and BubR1 maintain genomic integrity through two distinct mechanisms. Our results suggest that deregulated activation of the E2Fs in mammary epithelial cells is counteracted by activation of a Sgo1-dependent mitotic checkpoint.

8.
Biologics ; 10: 167-176, 2016.
Article in English | MEDLINE | ID: mdl-28008224

ABSTRACT

The centrosome, an organelle discovered >100 years ago, is the main microtubule-organizing center in mammalian organisms. The centrosome is composed of a pair of centrioles surrounded by the pericentriolar material (PMC) and plays a major role in the regulation of cell cycle transitions (G1-S, G2-M, and metaphase-anaphase), ensuring the normality of cell division. Hundreds of proteins found in the centrosome exert a variety of roles, including microtubule dynamics, nucleation, and kinetochore-microtubule attachments that allow correct chromosome alignment and segregation. Errors in these processes lead to structural (shape, size, number, position, and composition), functional (abnormal microtubule nucleation and disorganized spindles), and numerical (centrosome amplification [CA]) centrosome aberrations causing aneuploidy and genomic instability. Compelling data demonstrate that centrosomes are implicated in cancer, because there are important oncogenic and tumor suppressor proteins that are localized in this organelle and drive centrosome aberrations. Centrosome defects have been found in pre-neoplasias and tumors from breast, ovaries, prostate, head and neck, lung, liver, and bladder among many others. Several drugs/compounds against centrosomal proteins have shown promising results. Other drugs have higher toxicity with modest or no benefits, and there are more recently developed agents being tested in clinical trials. All of this emerging evidence suggests that targeting centrosome aberrations may be a future avenue for therapeutic intervention in cancer research.

9.
J Clin Cell Immunol ; 7(3)2016 Jun.
Article in English | MEDLINE | ID: mdl-27478681

ABSTRACT

The human immunodeficiency virus type 1 (HIV-1) epidemic has negatively affected over 40 million people worldwide. Antiretroviral therapy (ART) has improved life expectancy and changed the outcome of HIV-1 infection, making it a chronic and manageable disease. However, AIDS and non-AIDS comorbid illnesses persist during the course of infection despite the use of ART. In addition, the development of neuropsychiatric comorbidities (including depression) by HIV-infected subjects significantly affects quality of life, medication adherence, and disease prognosis. The factors associated with depression during HIV-1 infection include altered immune response, the release of pro-inflammatory cytokines, and monoamine imbalance. Elevated plasma pro-inflammatory cytokine levels contribute to the development of depression and depressive-like behaviors in HIV+ subjects. In addition, comorbid depression influences the decline rates of CD4+ cell counts and increases plasma viral load. Depression can manifest in some subjects despite their adherence to ART. In addition, psychosocial factors related to stigma (negative attitudes, moral issues, and abuse of HIV+ subjects) are also associated with depression. Both neurobiological and psychosocial factors are important considerations for the effective clinical management of HIV and the prevention of HIV disease progression.

10.
J Clin Cell Immunol ; 5(6)2014 Dec.
Article in English | MEDLINE | ID: mdl-25674354

ABSTRACT

OBJECTIVE: Depression is the most common psychiatric diagnosis in the HIV/AIDS population and represents a risk factor for disease progression. Since HIV-1 infection is characterized by immunologic and metabolic disturbances, we want to study the effects of depression on different components related to pro-inflammatory and oxidative stress markers. We hypothesize that depression will lead to increased pro-inflammatory cytokine levels and altered antioxidant/oxidant balance. METHODS: We included males and females who were ≥21 years of age, whose HIV-1 sero-status was confirmed by Western Blot, and who were currently undergoing antiretroviral treatment. Patients completed the participation consent form, a socio-demographic survey, and the Patient Health Questionnaire-9 (PHQ-9) for depression assessment. We isolated the plasma from participants' blood samples for viral load analysis (RT-PCR), T-cell counts (flow cytometry), and hematological parameters. A cytokine magnetic bead panel was used to measure interleukin-15 (IL-15), interferon gamma-induced protein 10 (IP-10), IL-12 and granulocyte colony-stimulating factor (G-CSF) levels. We also performed assays to determine the antioxidant activity of superoxide dismutase (SOD) and catalase and to measure the lipid peroxidation levels using malondialdehyde (MDA) and 8-isoprostane assays. Statistical comparisons and correlations at 5% level of significance were determined. RESULTS: Our results show that subjects with mild/moderate to severe depression as assessed by PHQ-9 had a significantly decreased adherence to anti-retroviral treatment. Subjects with depression also had significantly lower levels of white blood cells (WBC) and platelets (PLT) than did the non-depressed group. The HIV+ subjects with depression had increased levels of IL-15, IP-10, IL-12 p40/p70 and G-CSF compared to their non-depressed counterparts. The latter had increased MDA and 8-isoprostane levels. CONCLUSIONS: Our results suggest that HIV+ subjects with depressive symptoms have higher levels of inflammation and altered oxidant/antioxidant balance. Although the groups were small, this study strengthens the hypothesis that alterations in cytokines are associated with the mechanisms underlying depression symptoms.

SELECTION OF CITATIONS
SEARCH DETAIL
...