Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 14(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38338135

ABSTRACT

Although free-roaming and feral cat control techniques are often applied in human communities, community engagement is not always considered. A systematic literature review following an update of the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA 2020) methodology was conducted to evaluate whether community engagement influences the effectiveness of control techniques, excluding culling, in managing cat populations. The degree of community engagement was estimated based on the number of roles reported during the application of the control technique, which included adoption, trapping, care, and/or education. Education followed by adoption was the determining factor in the decreasing cat populations over time. The limited evaluations of control technique effectiveness, narrow geographical scope, and our simple measure of engagement emphasize the need for more detailed studies. These studies should evaluate the effectiveness of control techniques, while considering community engagement more comprehensively.

3.
Muscle Nerve ; 66(3): 354-361, 2022 09.
Article in English | MEDLINE | ID: mdl-35727064

ABSTRACT

INTRODUCTION/AIMS: We assessed the classification performance of machine learning (ML) using multifrequency electrical impedance myography (EIM) values to improve upon diagnostic outcomes as compared to those based on a single EIM value. METHODS: EIM data was obtained from unilateral excised gastrocnemius in eighty diseased mice (26 D2-mdx, Duchenne muscular dystrophy model, 39 SOD1G93A ALS model, and 15 db/db, a model of obesity-induced muscle atrophy) and 33 wild-type (WT) animals. We assessed the classification performance of a ML random forest algorithm incorporating all the data (multifrequency resistance, reactance and phase values) comparing it to the 50 kHz phase value alone. RESULTS: ML outperformed the 50 kHz analysis as based on receiver-operating characteristic curves and measurement of the area under the curve (AUC). For example, comparing all diseases together versus WT from the test set outputs, the AUC was 0.52 for 50 kHz phase, but was 0.94 for the ML model. Similarly, when comparing ALS versus WT, the AUCs were 0.79 for 50 kHz phase and 0.99 for ML. DISCUSSION: Multifrequency EIM using ML improves upon classification compared to that achieved with a single-frequency value. ML approaches should be considered in all future basic and clinical diagnostic applications of EIM.


Subject(s)
Amyotrophic Lateral Sclerosis , Myography , Algorithms , Amyotrophic Lateral Sclerosis/diagnosis , Animals , Electric Impedance , Machine Learning , Mice , Mice, Inbred mdx , Muscle, Skeletal
4.
Sci Rep ; 12(1): 5327, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35351934

ABSTRACT

Electrical impedance methods, including electrical impedance myography, are increasingly being used as biomarkers of muscle health since they measure passive electrical properties of muscle that alter in disease. One disorder, Pompe Disease (Glycogen storage disease type II (GSDII)), remains relatively unstudied. This disease is marked by dramatic accumulation of intracellular myofiber glycogen. Here we assessed the electrical properties of skeletal muscle in a model of GSDII, the Pompe6neo/6neo (Pompe) mouse. Ex vivo impedance measurements of gastrocnemius (GA) were obtained using a dielectric measuring cell in 30-week-old female Pompe (N = 10) and WT (N = 10) mice. Longitudinal and transverse conductivity, σ, and the relative permittivity, εr, and Cole-Cole complex resistivity parameters at 0 Hz and infinite frequency, ρo and ρ∞, respectively, and the intracellular resistivity, ρintracellular were determined from the impedance data. Glycogen content (GC) was visualized histologically and quantified biochemically. At frequencies > 1 MHz, Pompe mice demonstrated significantly decreased longitudinal and transverse conductivity, increased Cole-Cole parameters, ρo and ρo-ρ∞, and decreased ρintracellular. Changes in longitudinal conductivity and ρintracellular correlated with increased GC in Pompe animals. Ex vivo high frequency impedance measures are sensitive to alterations in intracellular myofiber features considered characteristic of GSDII, making them potentially useful measures of disease status.


Subject(s)
Glycogen Storage Disease Type II , Animals , Electric Conductivity , Electric Impedance , Female , Glycogen , Glycogen Storage Disease Type II/pathology , Mice , Muscle, Skeletal/physiology
5.
PLoS One ; 16(10): e0259071, 2021.
Article in English | MEDLINE | ID: mdl-34714853

ABSTRACT

Electrical impedance myography (EIM) using surface techniques has shown promise as a means of diagnosing and tracking disorders affecting muscle and assessing treatment efficacy. However, the relationship between such surface-obtained impedance values and pure muscle impedance values has not been established. Here we studied three groups of diseased and wild-type (WT) animals, including a Duchenne muscular dystrophy model (the D2-mdx mouse), an amyotrophic lateral sclerosis (ALS) model (the SOD1 G93A mouse), and a model of fat-related atrophy (the db/db diabetic obese mouse), performing hind limb measurements using a standard surface array and ex vivo measurements on freshly excised gastrocnemius muscle. A total of 101 animals (23 D2-mdx, 43 ALS mice, 12 db/db mice, and corresponding 30 WT mice) were studied with EIM across a frequency range of 8 kHz to 1 MHz. For both D2-mdx and ALS models, moderate strength correlations (Spearman rho values generally ranging from 0.3-0.7, depending on the impedance parameter (i.e., resistance, reactance and phase) were obtained. In these groups of animals, there was an offset in frequency with impedance values obtained at higher surface frequencies correlating more strongly to impedance values obtained at lower ex vivo frequencies. For the db/db model, correlations were comparatively weaker and strongest at very high and very low frequencies. When combining impedance data from all three disease models together, moderate correlations persisted (with maximal Spearman rho values of 0.45). These data support that surface EIM data reflect ex vivo muscle tissue EIM values to a moderate degree across several different diseases, with the highest correlations occurring in the 10-200 kHz frequency range. Understanding these relationships will prove useful for future applications of the technique of EIM in the assessment of neuromuscular disorders.


Subject(s)
Electromyography/methods , Neuromuscular Diseases/diagnosis , Animals , Electric Impedance , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle, Skeletal/pathology
6.
Muscle Nerve ; 63(6): 941-950, 2021 06.
Article in English | MEDLINE | ID: mdl-33759456

ABSTRACT

INTRODUCTION: Surface electrical impedance myography (sEIM) has the potential for providing information on muscle composition and structure noninvasively. We sought to evaluate its use to predict myofiber size and connective tissue deposition in the D2-mdx model of Duchenne muscular dystrophy (DMD). METHODS: We applied a prediction algorithm, the least absolute shrinkage and selection operator, to select specific EIM measurements obtained with surface and ex vivo EIM data from D2-mdx and wild-type (WT) mice (analyzed together or separately). We assessed myofiber cross-sectional area histologically and hydroxyproline (HP), a surrogate measure for connective tissue content, biochemically. RESULTS: Using WT and D2-mdx impedance values together in the algorithm, sEIM gave average root-mean-square errors (RMSEs) of 26.6% for CSA and 45.8% for HP, which translate into mean errors of ±363 µm2 for a mean CSA of 1365 µm2 and of ±1.44 µg HP/mg muscle for a mean HP content of 3.15 µg HP/mg muscle. Stronger predictions were obtained by analyzing sEIM data from D2-mdx animals alone (RMSEs of 15.3% for CSA and 34.1% for HP content). Predictions made using ex vivo EIM data from D2-mdx animals alone were nearly equivalent to those obtained with sEIM data (RMSE of 16.59% for CSA), and slightly more accurate for HP (RMSE of 26.7%). DISCUSSION: Surface EIM combined with a predictive algorithm can provide estimates of muscle pathology comparable to values obtained using ex vivo EIM, and can be used as a surrogate measure of disease severity and progression and response to therapy.


Subject(s)
Connective Tissue/physiopathology , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Duchenne/physiopathology , Animals , Electric Impedance , Electromyography , Mice, Inbred mdx , Muscle Fibers, Skeletal/physiology
7.
Muscle Nerve ; 63(1): 127-140, 2021 01.
Article in English | MEDLINE | ID: mdl-33063867

ABSTRACT

BACKGROUND: Electrical impedance myography (EIM) provides insight into muscle composition and structure. We sought to evaluate its use in a mouse obesity model characterized by myofiber atrophy. METHODS: We applied a prediction algorithm, ie, the least absolute shrinkage and selection operator (LASSO), to surface, needle array, and ex vivo EIM data from db/db and wild-type mice and assessed myofiber cross-sectional area (CSA) histologically and triglyceride (TG) content biochemically. RESULTS: EIM data from all three modalities provided acceptable predictions of myofiber CSA with average root mean square error (RMSE) of 15% in CSA (ie, ±209 µm2 for a mean CSA of 1439 µm2 ) and TG content with RMSE of 30% in TG content (ie, ±7.3 nmol TG/mg muscle for a mean TG content of 25.4 nmol TG/mg muscle). CONCLUSIONS: EIM combined with a predictive algorithm provides reasonable estimates of myofiber CSA and TG content without the need for biopsy.


Subject(s)
Atrophy/physiopathology , Electric Impedance , Muscle, Skeletal/physiopathology , Triglycerides , Animals , Atrophy/pathology , Disease Models, Animal , Male , Mice, Inbred C57BL , Mice, Transgenic , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , Myography/methods , Triglycerides/blood
8.
Front Physiol ; 11: 557796, 2020.
Article in English | MEDLINE | ID: mdl-33041858

ABSTRACT

As astronauts prepare to undertake new extra-terrestrial missions, innovative diagnostic tools are needed to better assess muscle deconditioning during periods of weightlessness and partial gravity. Electrical impedance myography (EIM) has been used to detect muscle deconditioning in rodents exposed to microgravity during spaceflight or using the standard ground-based model of hindlimb unloading via tail suspension (HU). Here, we used EIM to assess muscle changes in animals exposed to two new models: hindlimb suspension using a pelvic harness (HLS) and a partial weight-bearing (PWB) model that mimics partial gravity (including Lunar and Martian gravities). We also used a simple needle array electrode in lieu of surface or ex vivo EIM approaches previously employed. Our HLS results confirmed earlier findings obtained after spaceflight and tail suspension. Indeed, one EIM measure (i.e., phase-slope) that was previously reported as highly sensitive, was significantly decreased after HLS (day 0: 14.60 ± 0.97, day 7: 11.03 ± 0.81, and day 14: 10.13 ± 0.55 | Deg/MHz|, p < 0.0001), and was associated with a significant decrease in muscle grip force. Although EIM parameters such as 50 kHz phase, reactance, and resistance remained variable over 14 days in PWB animals, we identified major PWB-dependent effects at 7 days. Moreover, the data at both 7 and 14 days correlated to previously observed changes in rear paw grip force using the same PWB model. In conclusion, our data suggest that EIM has the potential to serve as biomarker of muscle deconditioning during exposure to both micro- and partial- gravity during future human space exploration.

9.
Front Physiol ; 11: 672, 2020.
Article in English | MEDLINE | ID: mdl-32719610

ABSTRACT

[This corrects the article DOI: 10.3389/fphys.2020.00302.].

10.
NPJ Microgravity ; 6: 15, 2020.
Article in English | MEDLINE | ID: mdl-32435691

ABSTRACT

Reduced skeletal loading leads to marked bone loss. Animal models of hindlimb suspension are widely used to assess alterations in skeleton during the course of complete unloading. More recently, the effects of partial unloading on the musculoskeletal system have been interrogated in mice and rats, revealing dose-dependent effects of partial weight bearing (PWB) on the skeleton and skeletal muscle. Here, we extended these studies to determine the structural and functional skeletal alterations in 14-week-old male Wister rats exposed to 20%, 40%, 70%, or 100% of body weight for 1, 2, or 4 weeks (n = 11-12/group). Using in vivo pQCT, we found that trabecular bone density at the proximal tibia declined in proportion to the degree of unloading and continued progressively with time, without evidence of a plateau by 4 weeks. Ex vivo measurements of trabecular microarchitecture in the distal femur by microcomputed tomography revealed deficits in bone volume fraction, 2 and 4 weeks after unloading. Histologic analyses of trabecular bone in the distal femur revealed the decreased osteoblast number and mineralizing surface in unloaded rats. Three-point bending of the femoral diaphysis indicated modest or no reductions in femoral stiffness and estimated modulus due to PWB. Our results suggest that this rat model of PWB leads to trabecular bone deterioration that is progressive and generally proportional to the degree of PWB, with minimal effects on cortical bone.

11.
Front Physiol ; 11: 302, 2020.
Article in English | MEDLINE | ID: mdl-32308630

ABSTRACT

Many studies have investigated the physiological response to microgravity in both astronauts and animals. However, while space agencies have sought to deploy more women on their missions; animal models rarely include females studies or comparisons between males and females. Therefore, we exposed adult female rats to 2 weeks of partial weight-bearing at either 100% of their normal loading (PWB100) or 40% of their normal loading (PWB40), corresponding to Martian gravity-analog, and assess muscle function, force and histomorphometry. Females exposed to PWB showed an 11.62% decline in hindlimb grip force associated with an 11.84% decrease in soleus myofiber size after 14 days of exposure, while maintaining normal blood oxygenation and stress levels. This pilot study represents the first experiment designed to understand the muscular disuse associated with a partial reduction in mechanical loading in female rats, and the first step needed to develop successful mitigating strategies. NEW AND NOTEWORTHY: This research article describes the first use of quadrupedal partial weight-bearing in female rats. This study demonstrates the feasibility of partial gravity analogs in females and allows for future investigations about the impact of sex on muscle deconditioning due to reduced mechanical loading.

12.
PLoS One ; 14(10): e0223265, 2019.
Article in English | MEDLINE | ID: mdl-31574117

ABSTRACT

Electrical impedance myography (EIM) is a technique for the assessment of muscle health and composition and has been shown to be sensitive to a variety of muscle pathologies including neurogenic atrophy and connective tissue deposition. However, it has been minimally studied in pure inflammation. In this study, we sought to assess EIM sensitivity to experimental inflammation induced by the localized intramuscular injection of λ-carrageenan. A total of 91 mice underwent 1-1000 kHz EIM measurements of gastrocnemius using a needle array, followed by injection of either 0.3% λ-carrageenan in phosphate-buffered saline (PBS) or PBS alone. Animals were then remeasured with EIM at 4, 24, 48, or 72 hours and euthanized and quantitative assessment of muscle histology was performed. Parallel alterations in both 5 and 50 kHz EIM values were identified at 4 and 24 hours, including reductions in phase, reactance, and resistance. In PBS-treated animals these values normalized by 48 hours, whereas substantial reductions in phase and reactance in 5 kHz EIM values persisted at 48 and 72 hours (i.e., values of phase 72 hours post-injection were 6.51 ± 0.40 degrees for λ-carrageenan versus 8.44 ± 0.35 degrees for PBS p<0.001, n = 11 per group). The degree of basophilic area observed in muscle sections by histology correlated to the degree of phase change at these two time points (Rspearman = -0.51, p = 0.0029). Changes in low frequency EIM parameters are sensitive to the presence of inflammatory infiltrates, and have the potential of serving as a simple means of quantifying the presence and extent of muscle inflammation without the need for biopsy.


Subject(s)
Carrageenan/adverse effects , Electric Impedance , Myography , Myositis/etiology , Myositis/physiopathology , Animals , Humans , Male , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Myositis/diagnosis
13.
Muscle Nerve ; 60(6): 801-810, 2019 12.
Article in English | MEDLINE | ID: mdl-31531861

ABSTRACT

INTRODUCTION: Improved methods are needed to detect and quantify age-related muscle change. In this study we assessed the electrical properties of muscle impacted by acquired mitochondrial DNA mutations via the PolG mouse, which exhibits typical age-associated features, and the impact of a potential therapy, nicotinamide mononucleotide (NMN). METHODS: The gastrocnemii of 24 PolG and 30 wild-type (WT) mice (8 PolG and 17 WT treated with NMN) were studied in an electrical impedance-measuring cell. Conductivity and relative permittivity were determined from the impedance data. Myofiber cross-sectional area (CSA) was quantified histologically. RESULTS: Untreated PolG mice demonstrated alterations in several impedance features, including 50-kHz relative permittivity and center frequency. A potential effect of NMN was also observed in these parameters in PolG but not WT animals. Impedance values correlated with myofiber CSA. DISCUSSION: Electrical impedance is sensitive to myofiber features considered characteristic of aging and to the impact of a potential therapy.


Subject(s)
Aging, Premature/physiopathology , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/physiopathology , Aging, Premature/pathology , Animals , Cell Size , DNA Polymerase gamma/genetics , DNA, Mitochondrial/genetics , Disease Models, Animal , Electric Impedance , Gene Knock-In Techniques , Mice , Muscle Fibers, Skeletal/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Mutation , Myography/methods , Nicotinamide Mononucleotide/pharmacology
14.
NPJ Microgravity ; 5: 20, 2019.
Article in English | MEDLINE | ID: mdl-31453318

ABSTRACT

In the near future, space agencies plan to send the first crews for extended stays on the Moon and Mars, where gravity is significantly reduced compared to Earth (0.16×g and 0.38×g, respectively). However, the long-term effects of partial gravity have not yet been elucidated, and ensuring astronauts' health and performance is crucial to the success of these missions. Using a quadrupedal partial weight-bearing (PWB) model in rats that we designed, we investigated the longitudinal time course of muscle function at three different PWB levels. We demonstrated that both muscle mass and muscle function are significantly impaired in reduced weight-bearing environments as early as after 7 days of suspension. Moreover, we showed that muscular alterations are correlated to the PWB level and do not reach a plateau during a 1-month exposure to reduced weight-bearing, emphasizing the need for mitigating countermeasures for safe and successful extraterrestrial exploration.

15.
Front Physiol ; 10: 899, 2019.
Article in English | MEDLINE | ID: mdl-31379604

ABSTRACT

While there is a relatively good understanding of the effects of microgravity on human physiology based on five decades of experience, the physiological consequences of partial gravity remain far less well understood. Until recently, no model had been able to replicate partial gravity such as that experienced on Mars (0.38 g), which would be critical to help sustain long-term missions and ensure a safe return to Earth. Recent development of two partial weight bearing (PWB) models, one in mice and one in rats, now allows for quadrupedal partial unloading that mimics Martian gravity. Resveratrol (RSV), a polyphenol most commonly found in grapes and blueberries, has been extensively investigated for its health benefits, including its anti-inflammatory, anti-oxidative, and anti-diabetic effects. In the context of mechanical unloading, RSV has also been shown to preserve bone and muscle mass. However, there is a lack of research regarding its effect on the musculoskeletal system in partial gravity. We hypothesized that a moderate daily dose of RSV (150 mg/kg/day) would help mitigate muscle deconditioning in a Mars gravity analog. Indeed, our results demonstrate that RSV treatment during partial unloading significantly preserves muscle function (e.g., the average change in grip force after 14 days of PWB40 was of -6.18, and +10.92% when RSV was administered) and mitigates muscle atrophy (e.g., RSV supplementation led to an increase of 21.6% in soleus weight for the unloaded animals). This work suggests the potential of a nutraceutical approach to reduce musculoskeletal deconditioning on a long-term mission to Mars.

16.
J Vis Exp ; (146)2019 04 04.
Article in English | MEDLINE | ID: mdl-31009001

ABSTRACT

Rodent ground-based models are widely used to understand the physiological consequences of space flight on the physiological system and have been routinely employed since 1979 and the development of hind limb unloading (HLU). However, the next steps in space exploration now include to travel to Mars where the gravity is 38% of Earth's gravity. Since no human being has experienced this level of partial gravity, a sustainable ground-based model is necessary to investigate how the body, already impaired by the time spent in microgravity, would react to this partial load. Here, we used our innovative partial weight-bearing (PWB) model to mimic a short mission and stay on Mars to assess the physiological impairments in the hind limb muscles induced by two different levels of reduced gravity applied in sequential fashion. This could provide a safe, ground-based model to study the musculoskeletal adaptations to gravitational change and to establish effective countermeasures to preserve astronauts' health and function.


Subject(s)
Hindlimb Suspension/adverse effects , Mars , Space Flight , Weightlessness Simulation/adverse effects , Adaptation, Physiological , Animals , Male , Muscles/physiology , Rats , Rats, Wistar , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL
...