Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
MAbs ; 6(3): 671-8, 2014.
Article in English | MEDLINE | ID: mdl-24517929

ABSTRACT

Antibodies are well-established as therapeutics, and the preclinical and clinical pipeline of these important biologics is growing rapidly. Consequently, there is considerable interest in technologies to engineer and manufacture them. Mammalian cell culture is commonly used for production because eukaryotic expression systems have evolved complex and efficient chaperone systems for the folding of antibodies. However, given the ease and manipulability of bacteria, antibody discovery efforts often employ bacterial expression systems despite their limitations in generating high titers of functional antibody. Open-Cell Free Synthesis (OCFS) is a coupled transcription-translation system that has the advantages of prokaryotic systems while achieving high titers of antibody expression. Due to the open nature of OCFS, it is easily modified by chemical or protein additives to improve the folding of select proteins. As such, we undertook a protein additive screen to identify chaperone proteins that improve the folding and assembly of trastuzumab in OCFS. From the screen, we identified the disulfide isomerase DsbC and the prolyl isomerase FkpA as important positive effectors of IgG folding. These periplasmic chaperones function synergistically for the folding and assembly of IgG, and, when present in sufficient quantities, gram per liter IgG titers can be produced. This technological advancement allows the rapid development and manufacturing of immunoglobulin proteins and pushes OCFS to the forefront of production technologies for biologics.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Immunoglobulins/biosynthesis , Immunoglobulins/genetics , Molecular Chaperones/metabolism , Antibodies, Monoclonal, Humanized/biosynthesis , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/genetics , Biotechnology , Cell-Free System , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans , Immunoglobulin G/biosynthesis , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Immunoglobulins/chemistry , Molecular Chaperones/genetics , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Protein Engineering , Protein Folding , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Trastuzumab
2.
Bioconjug Chem ; 25(2): 351-61, 2014 Feb 19.
Article in English | MEDLINE | ID: mdl-24437342

ABSTRACT

Antibody-drug conjugates (ADCs) are a targeted chemotherapeutic currently at the cutting edge of oncology medicine. These hybrid molecules consist of a tumor antigen-specific antibody coupled to a chemotherapeutic small molecule. Through targeted delivery of potent cytotoxins, ADCs exhibit improved therapeutic index and enhanced efficacy relative to traditional chemotherapies and monoclonal antibody therapies. The currently FDA-approved ADCs, Kadcyla (Immunogen/Roche) and Adcetris (Seattle Genetics), are produced by conjugation to surface-exposed lysines, or partial disulfide reduction and conjugation to free cysteines, respectively. These stochastic modes of conjugation lead to heterogeneous drug products with varied numbers of drugs conjugated across several possible sites. As a consequence, the field has limited understanding of the relationships between the site and extent of drug loading and ADC attributes such as efficacy, safety, pharmacokinetics, and immunogenicity. A robust platform for rapid production of ADCs with defined and uniform sites of drug conjugation would enable such studies. We have established a cell-free protein expression system for production of antibody drug conjugates through site-specific incorporation of the optimized non-natural amino acid, para-azidomethyl-l-phenylalanine (pAMF). By using our cell-free protein synthesis platform to directly screen a library of aaRS variants, we have discovered a novel variant of the Methanococcus jannaschii tyrosyl tRNA synthetase (TyrRS), with a high activity and specificity toward pAMF. We demonstrate that site-specific incorporation of pAMF facilitates near complete conjugation of a DBCO-PEG-monomethyl auristatin (DBCO-PEG-MMAF) drug to the tumor-specific, Her2-binding IgG Trastuzumab using strain-promoted azide-alkyne cycloaddition (SPAAC) copper-free click chemistry. The resultant ADCs proved highly potent in in vitro cell cytotoxicity assays.


Subject(s)
Amino Acids/chemistry , Immunoconjugates/chemistry , Cell Line , Cell-Free System , Chromatography, Liquid , High-Throughput Screening Assays , Humans , Immunoconjugates/pharmacology , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...