Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Neurosci ; 25(4): 433-445, 2022 04.
Article in English | MEDLINE | ID: mdl-35361972

ABSTRACT

The noncoding genome is substantially larger than the protein-coding genome but has been largely unexplored by genetic association studies. Here, we performed region-based rare variant association analysis of >25,000 variants in untranslated regions of 6,139 amyotrophic lateral sclerosis (ALS) whole genomes and the whole genomes of 70,403 non-ALS controls. We identified interleukin-18 receptor accessory protein (IL18RAP) 3' untranslated region (3'UTR) variants as significantly enriched in non-ALS genomes and associated with a fivefold reduced risk of developing ALS, and this was replicated in an independent cohort. These variants in the IL18RAP 3'UTR reduce mRNA stability and the binding of double-stranded RNA (dsRNA)-binding proteins. Finally, the variants of the IL18RAP 3'UTR confer a survival advantage for motor neurons because they dampen neurotoxicity of human induced pluripotent stem cell (iPSC)-derived microglia bearing an ALS-associated expansion in C9orf72, and this depends on NF-κB signaling. This study reveals genetic variants that protect against ALS by reducing neuroinflammation and emphasizes the importance of noncoding genetic association studies.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Interleukin-18 Receptor beta Subunit/genetics , 3' Untranslated Regions/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Interleukin-18 Receptor beta Subunit/metabolism , Motor Neurons/metabolism
2.
Mol Cell ; 80(5): 876-891.e6, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33217318

ABSTRACT

Stress granules (SGs) are cytoplasmic assemblies of proteins and non-translating mRNAs. Whereas much has been learned about SG formation, a major gap remains in understanding the compositional changes SGs undergo during normal disassembly and under disease conditions. Here, we address this gap by proteomic dissection of the SG temporal disassembly sequence using multi-bait APEX proximity proteomics. We discover 109 novel SG proteins and characterize distinct SG substructures. We reveal dozens of disassembly-engaged proteins (DEPs), some of which play functional roles in SG disassembly, including small ubiquitin-like modifier (SUMO) conjugating enzymes. We further demonstrate that SUMOylation regulates SG disassembly and SG formation. Parallel proteomics with amyotrophic lateral sclerosis (ALS)-associated C9ORF72 dipeptides uncovered attenuated DEP recruitment during SG disassembly and impaired SUMOylation. Accordingly, SUMO activity ameliorated C9ORF72-ALS-related neurodegeneration in Drosophila. By dissecting the SG spatiotemporal proteomic landscape, we provide an in-depth resource for future work on SG function and reveal basic and disease-relevant mechanisms of SG disassembly.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/metabolism , Cytoplasmic Granules/metabolism , Drosophila Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , C9orf72 Protein/genetics , Cell Line, Tumor , Cytoplasmic Granules/genetics , Cytoplasmic Granules/pathology , Dipeptides/genetics , Dipeptides/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster , Humans , Mice , Proteomics , Small Ubiquitin-Related Modifier Proteins/genetics
4.
Eur J Immunol ; 47(7): 1142-1152, 2017 07.
Article in English | MEDLINE | ID: mdl-28471480

ABSTRACT

T-cell development is a spatially and temporally regulated process, orchestrated by well-defined contributions of transcription factors and cytokines. Here, we identify the noncoding RNA miR-142 as an additional regulatory layer within murine thymocyte development and proliferation. MiR-142 deficiency impairs the expression of cell cycle-promoting genes in mature mouse thymocytes and early progenitors, accompanied with increased levels of cyclin-dependent kinase inhibitor 1B (Cdkn1b, also known as p27Kip1 ). By using CRISPR/Cas9 technology to delete the miR-142-3p recognition element in the 3'UTR of cdkn1b, we confirm that this gene is a novel target of miR-142-3p in vivo. Increased Cdkn1b protein expression alone however was insufficient to cause proliferation defects in thymocytes, indicating the existence of additional critical miR-142 targets. Collectively, we establish a key role for miR-142 in the control of early and mature thymocyte proliferation, demonstrating the multifaceted role of a single miRNA on several target genes.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p27/genetics , MicroRNAs/metabolism , Thymocytes/physiology , 3' Untranslated Regions , Animals , CRISPR-Cas Systems , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p27/deficiency , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Gene Expression Regulation, Neoplastic , Mice , MicroRNAs/genetics , RNA Processing, Post-Transcriptional
5.
Haematologica ; 102(4): 676-685, 2017 04.
Article in English | MEDLINE | ID: mdl-27909218

ABSTRACT

Hematopoietic-specific microRNA-142 is a critical regulator of various blood cell lineages, but its role in erythrocytes is unexplored. Herein, we characterize the impact of microRNA-142 on erythrocyte physiology and molecular cell biology, using a mouse loss-of-function allele. We report that microRNA-142 is required for maintaining the typical erythrocyte biconcave shape and structural resilience, for the normal metabolism of reactive oxygen species, and for overall lifespan. microRNA-142 further controls ACTIN filament homeostasis and membrane skeleton organization. The analyses presented reveal previously unappreciated functions of microRNA-142 and contribute to an emerging view of small RNAs as key players in erythropoiesis. Finally, the work herein demonstrates how a housekeeping network of cytoskeletal regulators can be reshaped by a single micro-RNA denominator in a cell type specific manner.


Subject(s)
Cell Survival/genetics , Erythrocyte Aging/genetics , Erythrocytes/metabolism , MicroRNAs/genetics , Animals , Cell Line , Erythrocytes/pathology , Erythrocytes/ultrastructure , Erythropoiesis/genetics , Humans , Mice , Mice, Knockout , Oxidation-Reduction , Reactive Oxygen Species
6.
Elife ; 3: e01964, 2014 May 23.
Article in English | MEDLINE | ID: mdl-24859754

ABSTRACT

Genome-encoded microRNAs (miRNAs) provide a posttranscriptional regulatory layer that controls the differentiation and function of various cellular systems, including hematopoietic cells. miR-142 is one of the most prevalently expressed miRNAs within the hematopoietic lineage. To address the in vivo functions of miR-142, we utilized a novel reporter and a loss-of-function mouse allele that we have recently generated. In this study, we show that miR-142 is broadly expressed in the adult hematopoietic system. Our data further reveal that miR-142 is critical for megakaryopoiesis. Genetic ablation of miR-142 caused impaired megakaryocyte maturation, inhibition of polyploidization, abnormal proplatelet formation, and thrombocytopenia. Finally, we characterized a network of miR-142-3p targets which collectively control actin filament homeostasis, thereby ensuring proper execution of actin-dependent proplatelet formation. Our study reveals a pivotal role for miR-142 activity in megakaryocyte maturation and function, and demonstrates a critical contribution of a single miRNA in orchestrating cytoskeletal dynamics and normal hemostasis.DOI: http://dx.doi.org/10.7554/eLife.01964.001.


Subject(s)
Actin Cytoskeleton/metabolism , Megakaryocytes/metabolism , MicroRNAs/metabolism , Thrombocytopenia/metabolism , Thrombopoiesis , Animals , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Gene Expression Regulation , Genotype , HEK293 Cells , Hemostasis , Homeostasis , Humans , Megakaryocytes/pathology , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , Phenotype , RNA Interference , Signal Transduction , Thrombocytopenia/blood , Thrombocytopenia/genetics , Thrombopoiesis/genetics , Transfection
7.
EMBO J ; 30(5): 835-45, 2011 Mar 02.
Article in English | MEDLINE | ID: mdl-21285947

ABSTRACT

MicroRNAs (miRNAs) were shown to be important for pancreas development, yet their roles in differentiated ß-cells remain unclear. Here, we show that miRNA inactivation in ß-cells of adult mice results in a striking diabetic phenotype. While islet architecture is intact and differentiation markers are maintained, Dicer1-deficient ß-cells show a dramatic decrease in insulin content and insulin mRNA. As a consequence of the change in insulin content, the animals become diabetic. We provide evidence for involvement of a set of miRNAs in regulating insulin synthesis. The specific knockdown of miR-24, miR-26, miR-182 or miR-148 in cultured ß-cells or in isolated primary islets downregulates insulin promoter activity and insulin mRNA levels. Further, miRNA-dependent regulation of insulin expression is associated with upregulation of transcriptional repressors, including Bhlhe22 and Sox6. Thus, miRNAs in the adult pancreas act in a new network that reinforces insulin expression by reducing the expression of insulin transcriptional repressors.


Subject(s)
DEAD-box RNA Helicases/physiology , Endoribonucleases/physiology , Insulin-Secreting Cells/metabolism , Insulin/genetics , Insulin/metabolism , MicroRNAs/physiology , Repressor Proteins/metabolism , Transcription, Genetic , Animals , Blotting, Western , Cell Differentiation , Cells, Cultured , Down-Regulation , Glucose Intolerance , Humans , Immunoenzyme Techniques , Insulin-Secreting Cells/cytology , Integrases/metabolism , Luciferases/metabolism , Mice , Mice, Knockout , MicroRNAs/antagonists & inhibitors , RNA, Messenger/genetics , Repressor Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Ribonuclease III
8.
Mol Biol Evol ; 28(1): 551-65, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20801908

ABSTRACT

The GDSL-lipase gene family is a very large subfamily within the supergene family of SGNH esterases, defined by the distinct GDSL amino acid motif and several highly conserved domains. Plants retain a large number of GDSL-lipases indicating that they have acquired important functions. Yet, in planta functions have been demonstrated for only a few GDSL-lipases from diverse species. Considering that orthologs often retain equivalent functions, we determined the phylogenetic relationships between GDSL-lipases from genome-sequenced species representing bryophytes, gymnosperms, monocots, and eudicots. An unrooted phylogenetic tree was constructed from the amino acid sequences of 604 GDSL-lipases from seven species. The topology of the tree depicts two major and one minor subfamily. This division is also supported by the unique gene structure of each subfamily. Because GDSL-lipase genes of all species are present in each of the three subfamilies, we conclude that the last common ancestor of the land plants already possessed at least one ancestral GDSL-lipase gene of each subfamily. Combined gene structure and synteny analyses revealed events of segmental duplications, gene transposition, and gene degeneration in the evolution of the GDSL-lipase gene family. Furthermore, these analyses showed that independent events of intron gain and loss also contributed to the extant repertoire of the GDSL-lipase gene family. Our findings suggest that underlying many of the intron losses was a spliceosomal-mediated mechanism followed by gene conversion. Sorting the phylogenetic relationships among the members of the GDSL-lipase gene family, as depicted by the tree and supported by synteny analyses, provides a framework for extrapolation of demonstrated functional data to GDSL-lipases, whose function is yet unknown. Furthermore, function(s) associated with specific lineage(s)-enriched branches may reveal correlations between acquired and/or lost functions and speciation.


Subject(s)
Carboxylic Ester Hydrolases/classification , Carboxylic Ester Hydrolases/genetics , Evolution, Molecular , Plant Proteins/classification , Plant Proteins/genetics , Plants/enzymology , Amino Acid Sequence , Base Sequence , Gene Duplication , Genetic Speciation , Genome , Introns , Molecular Sequence Data , Multigene Family , Phylogeny , Sequence Alignment , Synteny
SELECTION OF CITATIONS
SEARCH DETAIL