Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 10(5)2020 May 12.
Article in English | MEDLINE | ID: mdl-32408633

ABSTRACT

Assessing the carriage of Campylobacter in animal reservoirs is essential to better understand Campylobacter epidemiology. Here, we evaluated the prevalence of thermophilic Campylobacter spp. in dogs and cats, hereafter defined as pets, and characterized Campylobacter jejuni (C. jejuni) isolates to assess their genetic diversity and their potential link with isolates from other animals or human cases. During a 6-month period, 304 feces samples were collected from pets. A significantly higher prevalence of thermophilic Campylobacter spp. was found in dogs compared with cats, as well as in dogs ≤ 1-year-old compared with older dogs. C. jejuni was the predominant species found in pets, and its genomic characterization revealed a high genetic diversity. Genotypes comparison with previously characterized isolates revealed a partial overlap between C. jejuni isolates from pets, chicken, cattle, and clinical cases. This overlap suggests the potential role of livestock and humans in pets' exposure to Campylobacter, or vice versa. The isolation of pets' specific profiles may suggest the existence of other sources of pet contamination or imply that pets may constitute a reservoir for Campylobacter. Because of the proximity between humans and pets, along with their frequent carriage of C. jejuni, human exposure to Campylobacter from pets can be more important than previously thought.

2.
Sci Rep ; 9(1): 8098, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31147581

ABSTRACT

Campylobacter jejuni is the most common cause of bacterial gastroenteritis worldwide. Mainly isolated from stool samples, C. jejuni can also become invasive. C. jejuni belongs to the commensal microbiota of a number of hosts, and infection by this bacterium can sometimes be traced back to exposure to a specific source. Here we genome sequenced 200 clinical isolates (2010-2016) and analyzed them with 701 isolate genomes from human infection, chicken, ruminants and the environment to examine the relative contribution of different reservoirs to non-invasive and invasive infection in France. Host-segregating genetic markers that can discriminate C. jejuni source were used with STRUCTURE software to probabilistically attribute the source of clinical strains. A self-attribution correction step, based upon the accuracy of source apportionment within each potential reservoir, improved attribution accuracy of clinical strains and suggested an important role for ruminant reservoirs in non-invasive infection and a potentially increased contribution of chicken as a source of invasive isolates. Structured sampling of Campylobacter in the clinic and from potential reservoirs provided evidence for variation in the contribution of different infection sources over time and an important role for non-poultry reservoirs in France. This provides a basis for ongoing genomic epidemiology surveillance and targeted interventions.


Subject(s)
Campylobacter Infections/microbiology , Campylobacter jejuni/isolation & purification , Chickens/microbiology , Disease Reservoirs/microbiology , Gastroenteritis/microbiology , Ruminants/microbiology , Animals , Bacterial Typing Techniques , Campylobacter Infections/epidemiology , Campylobacter jejuni/genetics , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , DNA, Environmental/genetics , DNA, Environmental/isolation & purification , Datasets as Topic , Epidemiological Monitoring/veterinary , France/epidemiology , Gastroenteritis/epidemiology , Genetic Markers/genetics , Genome, Bacterial/genetics , Humans , Molecular Epidemiology , Multilocus Sequence Typing , Whole Genome Sequencing
3.
Sci Rep ; 8(1): 9305, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29915208

ABSTRACT

Pathogen source attribution studies are a useful tool for identifying reservoirs of human infection. Based on Multilocus Sequence Typing (MLST) data, such studies have identified chicken as a major source of C. jejuni human infection. The use of whole genome sequence-based typing methods offers potential to improve the precision of attribution beyond that which is possible from 7 MLST loci. Using published data and 156 novel C. jejuni genomes sequenced in this study, we performed probabilistic host source attribution of clinical C. jejuni isolates from France using three types of genotype data: comparative genomic fingerprints; MLST genes; 15 host segregating genes previously identified by whole genome sequencing. Consistent with previous studies, chicken was an important source of campylobacteriosis in France (31-63% of clinical isolates assigned). There was also evidence that ruminants are a source (22-55% of clinical isolates assigned), suggesting that further investigation of potential transmission routes from ruminants to human would be useful. Additionally, we found evidence of environmental and pet sources. However, the relative importance as sources varied according to the year of isolation and the genotyping technique used. Annual variations in attribution emphasize the dynamic nature of zoonotic transmission and the need to perform source attribution regularly.


Subject(s)
Campylobacter Infections/epidemiology , Chickens/microbiology , Ruminants/microbiology , Animals , Bacterial Typing Techniques , Campylobacter jejuni/genetics , Campylobacter jejuni/isolation & purification , France/epidemiology , Humans , Multilocus Sequence Typing , Probability , Whole Genome Sequencing
4.
Front Microbiol ; 9: 471, 2018.
Article in English | MEDLINE | ID: mdl-29615999

ABSTRACT

Campylobacter is the leading cause of bacterial gastroenteritis in industrialized countries, with poultry reservoir as the main source of infection. Nevertheless, a recent study on source attribution showed that cattle could be a source of human contamination in France (Thépault et al., 2017). However, few data are available on thermophilic Campylobacter epidemiology in cattle in France. The aim of this study is to collect new data of thermophilic Campylobacter prevalence in these animals and to subtype C. jejuni isolates to assess the potential implication of cattle in campylobacteriosis. A 6-month survey was carried out in one of the largest European slaughterhouse of cattle. Based on a statistical representative sampling plan, 959 intestinal content samples (483 adult cattle and 476 calves) were collected. An adapted version of the ISO 10272 standard and Maldi-Tof were used for detection and speciation of thermophilic Campylobacter isolates. Within more than 2000 thermophilic Campylobacter isolates collected, a selection of 649 C. jejuni isolates was typed with Comparative Genomic Fingerprinting (CGF40) and a subset of 77 isolates was typed using Multilocus Sequence Typing (MLST). Simultaneously, clinical isolates occurred in France were genotyped. Prevalence of thermophilic Campylobacter in the global cattle population was 69.1% (CI95% = 66.1, 72.1) at slaughterhouse level. In adult cattle, the prevalence was 39.3%, while 99.4% of calves were contaminated, and C. jejuni was the most prevalent species with prevalence of 37.3 and 98.5%, respectively and a higher genetic diversity in adult cattle. The prevalence of C. coli was lower with 3% in adult cattle and 12.5% in calves. MLST and CGF40 genotyping did not showed a high number of clusters within cattle isolates but the predominance of few clusters accounted for a large part of the population (CC-21, CC-61, CC-48, and CC-257). By comparison with clinical genotypes, genetic diversity was significantly lower in cattle. Moreover, significant overlap was observed between genotypes from both origins, with 3 of the 4 main cattle clusters present in human isolates. This study provides new insights on the epidemiology of thermophilic Campylobacter and C. jejuni in cattle production in France and their potential implication in human infection.

5.
Int J Food Microbiol ; 274: 20-30, 2018 Jun 02.
Article in English | MEDLINE | ID: mdl-29579648

ABSTRACT

Campylobacter jejuni is the most common cause of bacterial gastroenteritis worldwide and is associated with post-infectious neuropathies. Moreover, the chicken reservoir is described as the main source of human infection and C. jejuni sialylated lipooligosaccharides seem to play an important role in the pathogenesis of neuropathies. In this study, MultiLocus Sequence Typing (MLST) and Comparative Genomic Fingerprinting using 40 assay genes (CGF40) were used to describe C. jejuni populations within clinical isolates and a representative collection of isolates from French poultry production. In addition, the sialylation of C. jejuni LOS was assessed. Here, we report high levels of genetic diversity among both chicken and human disease C. jejuni populations. The predominance of the ST-21, ST-45, and ST-464 complexes in chicken isolates and of the ST-21, ST-206, and ST-48 complexes in the clinical isolates was observed as were correlations between some MLST and CGF40 genotypes. Furthermore, some C. jejuni genotypes were frequently isolated among clinical cases as well as all along the broiler production chain, suggesting a potentially high implication of chicken in human campylobacteriosis in France. Finally, the LOS classes A, B and C were predominant within clinical C. jejuni isolates supporting the hypothesis of a benefit in infectivity for C. jejuni isolates showing sialylated LOS.


Subject(s)
Campylobacter Infections/microbiology , Campylobacter jejuni/genetics , Chickens/microbiology , Genetic Variation , Lipopolysaccharides/chemistry , Animals , France , Genotype , Humans , Multilocus Sequence Typing
6.
Appl Environ Microbiol ; 83(7)2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28115376

ABSTRACT

Campylobacter is among the most common worldwide causes of bacterial gastroenteritis. This organism is part of the commensal microbiota of numerous host species, including livestock, and these animals constitute potential sources of human infection. Molecular typing approaches, especially multilocus sequence typing (MLST), have been used to attribute the source of human campylobacteriosis by quantifying the relative abundance of alleles at seven MLST loci among isolates from animal reservoirs and human infection, implicating chicken as a major infection source. The increasing availability of bacterial genomes provides data on allelic variation at loci across the genome, providing the potential to improve the discriminatory power of data for source attribution. Here we present a source attribution approach based on the identification of novel epidemiological markers among a reference pan-genome list of 1,810 genes identified by gene-by-gene comparison of 884 genomes of Campylobacter jejuni isolates from animal reservoirs, the environment, and clinical cases. Fifteen loci involved in metabolic activities, protein modification, signal transduction, and stress response or coding for hypothetical proteins were selected as host-segregating markers and used to attribute the source of 42 French and 281 United Kingdom clinical C. jejuni isolates. Consistent with previous studies of British campylobacteriosis, analyses performed using STRUCTURE software attributed 56.8% of British clinical cases to chicken, emphasizing the importance of this host reservoir as an infection source in the United Kingdom. However, among French clinical isolates, approximately equal proportions of isolates were attributed to chicken and ruminant reservoirs, suggesting possible differences in the relative importance of animal host reservoirs and indicating a benefit for further national-scale attribution modeling to account for differences in production, behavior, and food consumption.IMPORTANCE Accurately quantifying the relative contribution of different host reservoirs to human Campylobacter infection is an ongoing challenge. This study, based on the development of a novel source attribution approach, provides the first results of source attribution in Campylobacter jejuni in France. A systematic analysis using gene-by-gene comparison of 884 genomes of C. jejuni isolates, with a pan-genome list of genes, identified 15 novel epidemiological markers for source attribution. The different proportions of French and United Kingdom clinical isolates attributed to each host reservoir illustrate a potential role for local/national variations in C. jejuni transmission dynamics.


Subject(s)
Campylobacter Infections/epidemiology , Campylobacter Infections/microbiology , Campylobacter jejuni/genetics , Food Microbiology , Genome, Bacterial , Animals , Bacterial Typing Techniques , Campylobacter/isolation & purification , Campylobacter Infections/transmission , Campylobacter jejuni/classification , Chickens/microbiology , Disease Reservoirs/microbiology , France/epidemiology , Genetic Markers , Genomics , Humans , Multilocus Sequence Typing , Ruminants/microbiology , United Kingdom/epidemiology
7.
Int J Food Microbiol ; 203: 8-14, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-25770428

ABSTRACT

Campylobacter was detected in 76% of broiler meat products collected in retail outlets during a monitoring plan carried out in France throughout 2009. Campylobacter jejuni was the most prevalent species (64.7% of products being contaminated). The 175 C. jejuni isolates collected were characterized. MLST typing results confirmed substantial genetic diversity as the 175 C. jejuni isolates generated 76 sequence types (STs). The ST-21, ST-45 and ST-464 complexes predominated accounting for 43% of all isolates. A class-specific PCR to screen the sialylated lipooligosaccharide (LOS) locus classes A, B and C showed that 50.3% of the C. jejuni isolates harbored sialylated LOS. The antimicrobial resistance profiles established using a subset of 97 isolates showed that resistance to tetracycline was the most common (53.6%), followed with ciprofloxacin and nalidixic acid (32.9%, and 32.0% respectively). All the tested isolates were susceptible to erythromycin, chloramphenicol and gentamicin. Clear associations were demonstrated between certain clonal complexes and LOS locus classes and between certain clonal complexes and antimicrobial resistance. This work paints a representative picture of C. jejuni isolated from poultry products circulating in France, providing data on STs, LOS locus classes and antibiotic resistance profiles in isolates recovered from products directly available to the consumer.


Subject(s)
Campylobacter jejuni/physiology , Food Microbiology/statistics & numerical data , Meat/microbiology , Animals , Anti-Bacterial Agents/pharmacology , Campylobacter jejuni/drug effects , Campylobacter jejuni/genetics , Campylobacter jejuni/isolation & purification , Chickens/microbiology , Drug Resistance, Microbial/genetics , France , Genetic Variation , Multilocus Sequence Typing , Polymerase Chain Reaction
8.
Int J Food Microbiol ; 166(1): 109-16, 2013 Aug 16.
Article in English | MEDLINE | ID: mdl-23850854

ABSTRACT

Human listeriosis, caused by Listeria monocytogenes, is a severe bacterial infection that can lead to meningitis, cerebromeningitis, bacteremia or septicemia, with acute lethality and potentially leading to death. A study has shown that 29.5% of the caged laying hens in France are contaminated by L. monocytogenes (Chemaly et al., 2008). However, very little information regarding egg and egg product contamination is currently available. The objective of this study is to determine the sanitary status of egg products and egg breaking plants in France regarding Listeria spp. and L. monocytogenes contaminations. The sampling scheme performed in five egg breaking plants in Western France during one year have revealed that 8.5% of raw egg products were contaminated by L. monocytogenes. No pasteurized egg products have been shown to be contaminated by L. monocytogenes. However, a high level of contamination by Listeria spp., and particularly by L. innocua, has been shown with 26.2% and 1.8% of raw and pasteurized egg products contaminated, respectively. This work has also revealed the presence of Listeria spp. and L. monocytogenes in the environment of egg breaking plants with 65.1% and 8.0% of contaminated samples, respectively. The typing of 253 isolates of L. monocytogenes by PFGE using ApaI and AscI enzymes has revealed a high diversity with 46 different pulsotypes and has shown that the raw material is a source of contamination of egg breaking plants. One L. monocytogenes cluster was dominant in the 5 egg-breaking plants during the four seasons studied. The issue of which strains are better adapted to egg products must be considered and studied in depth by comparing them to pulsotypes from strains of other chains. However, the traceability of L. monocytogenes in plants during the various seasons has also made it possible to highlight the presence of strains that are specific to egg breaking plants. The study of cleaning and disinfection methods in these plants as well as the recurring bacteria's resistance to disinfectants could provide answers to the egg product industry.


Subject(s)
Eggs/microbiology , Electrophoresis, Gel, Pulsed-Field , Food Microbiology , Food-Processing Industry/standards , Listeria/physiology , Bacterial Typing Techniques , Cluster Analysis , Environmental Microbiology , France , Genes, Bacterial/genetics , Genetic Variation , Humans , Listeria/genetics , Listeria/isolation & purification , Listeria monocytogenes/genetics , Listeria monocytogenes/isolation & purification , Seasons
9.
Microbiology (Reading) ; 159(Pt 6): 1165-1178, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23558264

ABSTRACT

Transcriptional regulation mediates adaptation of pathogens to environmental stimuli and is important for host colonization. The Campylobacter jejuni genome sequence reveals a surprisingly small set of regulators, mostly of unknown function, suggesting an intricate regulatory network. Interestingly, C. jejuni lacks the homologues of ubiquitous regulators involved in stress response found in many other Gram-negative bacteria. Nonetheless, cj1000 is predicted to encode the sole LysR-type regulator in the C. jejuni genome, and thus may be involved in major adaptation pathways. A cj1000 mutant strain was constructed and found to be attenuated in its ability to colonize 1-day-old chicks. Complementation of the cj1000 mutation restored the colonization ability to wild-type levels. The mutant strain was also outcompeted in a competitive colonization assay of the piglet intestine. Oxygraphy was carried out for what is believed to be the first time with the Oroboros Oxygraph-2k on C. jejuni and revealed a role for Cj1000 in controlling O2 consumption. Furthermore, microarray analysis of the cj1000 mutant revealed both direct and indirect regulatory targets, including genes involved in energy metabolism and oxidative stress defences. These results highlight the importance of Cj1000 regulation in host colonization and in major physiological pathways.


Subject(s)
Bacterial Proteins/metabolism , Campylobacter jejuni/genetics , Campylobacter jejuni/pathogenicity , Gene Expression Regulation, Bacterial , Oxygen Consumption , Transcription Factors/metabolism , Animals , Bacterial Proteins/genetics , Campylobacter Infections/microbiology , Campylobacter jejuni/metabolism , Chickens , Disease Models, Animal , Gene Expression Profiling , Gene Knockout Techniques , Genetic Complementation Test , Intestines/microbiology , Metabolic Networks and Pathways/genetics , Microarray Analysis , Swine , Transcription Factors/genetics
10.
Article in English | MEDLINE | ID: mdl-22919622

ABSTRACT

Polynucleotide phosphorylase (PNPase), encoded by the pnp gene, is known to degrade mRNA, mediating post-transcriptional regulation and may affect cellular functions. The role of PNPase is pleiotropic. As orthologs of the two major ribonucleases (RNase E and RNase II) of Escherichia coli are missing in the Campylobacter jejuni genome, in the current study the focus has been on the C. jejuni ortholog of PNPase. The effect of PNPase mutation on C. jejuni phenotypes and proteome was investigated. The inactivation of the pnp gene reduced significantly the ability of C. jejuni to adhere and to invade Ht-29 cells. Moreover, the pnp mutant strain exhibited a decrease in C. jejuni swimming ability and chick colonization. To explain effects of PNPase on C. jejuni 81-176 phenotype, the proteome of the pnp mutant and parental strains were compared. Overall, little variation in protein production was observed. Despite the predicted role of PNPase in mRNA regulation, the pnp mutation did not induce profound proteomic changes suggesting that other ribonucleases in C. jejuni might ensure this biological function in the absence of PNPase. Nevertheless, synthesis of proteins which are involved in virulence (LuxS, PEB3), motility (N-acetylneuraminic acid synthetase), stress-response (KatA, DnaK, Hsp90), and translation system (EF-Tu, EF-G) were modified in the pnp mutant strain suggesting a more specific role of PNPase in C. jejuni. In conclusion, PNPase deficiency induces limited but important consequences on C. jejuni biology that could explain swimming limitation, chick colonization delay, and the decrease of cell adhesion/invasion ability.


Subject(s)
Campylobacter jejuni/enzymology , Campylobacter jejuni/metabolism , Polyribonucleotide Nucleotidyltransferase/metabolism , Virulence Factors/metabolism , Animals , Bacterial Adhesion , Bacterial Proteins/analysis , Campylobacter Infections/microbiology , Campylobacter jejuni/genetics , Campylobacter jejuni/pathogenicity , Carrier State/microbiology , Cell Line , Chickens , Endocytosis , Epithelial Cells/microbiology , Gastrointestinal Tract/microbiology , Gene Deletion , Gene Expression Regulation, Bacterial , Genetic Complementation Test , Humans , Locomotion , Polyribonucleotide Nucleotidyltransferase/genetics , Proteome/analysis , Virulence
11.
Int J Food Microbiol ; 138(1-2): 56-62, 2010 Mar 31.
Article in English | MEDLINE | ID: mdl-20129686

ABSTRACT

Listeria monocytogenes has been recognized as a human pathogen for decades and is known to be an important foodborne pathogen. There have been no documented foodborne L. monocytogenes illnesses due to the consumption of eggs or egg products, even though the bacterium has been isolated from faeces, body fluid, and oviducts of asymptomatic laying hens. In order to describe L. monocytogenes contamination of egg products, 144 liquid whole egg samples were collected from 3 different egg-breaking plants during 3 sampling periods. L. monocytogenes detection was performed on raw samples stored at 2 degrees C for two days (D+2) and on pasteurized samples stored at 2 degrees C at D+2 and at shelf-life date (SLD). L. monocytogenes was detected in 25 of the 144 raw egg samples collected, in 4 of the 144 pasteurized egg samples at D+2 and in 2 of the 144 ones analysed at SLD. Contamination of raw egg products appeared to be season dependant and was higher during summer and winter than during autumn. One hundred and ninety-six L. monocytogenes isolates were collected and serotyped; 3 serovars were demonstrated. The dominant serovar was L. monocytogenes 1/2a which was presented by 94.4% of the isolates. Typing of 196 L. monocytogenes isolates was carried out by macrorestriction of the genomic DNA with ApaI and AscI enzymes followed by pulsed field gel electrophoresis (PFGE). A large diversity was observed with 21 genotypes of L. monocytogenes, even for a given manufacturer. Nevertheless, most of the egg product samples were contaminated by one genotype, except for five samples which were contaminated by two or three distinct genotypes. The genotypes seem to be specific to each manufacturer. No cluster of L. monocytogenes was found to recur in the different plants over successive seasons.


Subject(s)
Eggs/microbiology , Electrophoresis, Gel, Pulsed-Field , Food Contamination/analysis , Listeria monocytogenes/isolation & purification , Animals , Chickens , Colony Count, Microbial , Consumer Product Safety , DNA, Bacterial/analysis , Food Microbiology , Foodborne Diseases/epidemiology , Foodborne Diseases/prevention & control , Genotype , Humans , Listeria monocytogenes/classification , Listeria monocytogenes/growth & development , Seasons , Serotyping , Temperature , Time Factors
12.
Int J Food Microbiol ; 129(2): 180-6, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19128850

ABSTRACT

Salmonella is a well-documented pathogen known to occur in a wide range of foods, especially poultry products. The most frequently reported food-sources of human infection are eggs and egg products. In this study, in order to describe Salmonella contamination of egg products, 144 liquid egg samples were collected from 3 different egg-breaking plants during the 3 sampling periods. Salmonella detection was performed on raw samples stored at 2 degrees C for 2 days (D+2) and on pasteurised samples stored at 2 degrees C at D+2 and at shelf-life date. Salmonella was detected in 130 of the 144 raw egg samples collected and in 11 of the 288 pasteurised egg samples analysed. 740 Salmonella isolates were collected and serotyped: 14 serovars were demonstrated. A great diversity, particularly during summer, was noted. The dominant serovars were S. Enteritidis, S. Typhimurium and S. Infantis, mainly found in whole raw egg products. Typing of 325 isolates of S. Enteritidis, 54 isolates of S. Typhimurium and 58 isolates of S. Infantis was carried out by macrorestriction of the genomic DNA with XbaI and SpeI enzymes followed by pulsed field gel electrophoresis (PFGE). The Salmonella Enteritidis isolates could be grouped into 3 clusters. Cluster 1 was predominant at all 3 egg-breaking companies during the different sampling periods. This cluster seemed to be adapted to the egg-breaking plants. Cluster 2 was linked to plant 1 and cluster 3 to plant 3. Two main clusters of Salmonella Typhimurium were demonstrated. Cluster A was mainly found at plant 2 during autumn. Plant 3 was contaminated by all the Salmonella Typhimurium genotypes but in a more sporadic manner during the three seasons studied. Plant 1 seemed to be less contaminated by Salmonella Typhimurium than the others. Three clusters and 2 genotypes of Salmonella Infantis were shown. The main cluster, cluster alpha, consisted of 75% of the S. Infantis isolates and was mainly found during summer at plants 1 and 3. Plant 2 seemed to be less contaminated by S. Infantis. In this study, molecular typing demonstrated that, although certain clusters were common to all three companies, specific clusters, notably of S. Enteritidis were present at each plant.


Subject(s)
Consumer Product Safety , Eggs/microbiology , Electrophoresis, Gel, Pulsed-Field/methods , Food Contamination/analysis , Salmonella/isolation & purification , Animals , Bacterial Typing Techniques , Cluster Analysis , Colony Count, Microbial , DNA, Bacterial/analysis , Food Microbiology , France , Humans , Salmonella/classification , Salmonella Food Poisoning/epidemiology , Salmonella Food Poisoning/prevention & control , Salmonella enteritidis/classification , Salmonella enteritidis/isolation & purification , Salmonella typhimurium/classification , Salmonella typhimurium/isolation & purification , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...