Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Proc Biol Sci ; 290(1993): 20222420, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36809802

ABSTRACT

Climate change has had a major impact on seasonal weather patterns, resulting in marked phenological changes in a wide range of taxa. However, empirical studies of how changes in seasonality impact the emergence and seasonal dynamics of vector-borne diseases have been limited. Lyme borreliosis, a bacterial infection spread by hard-bodied ticks, is the most common vector-borne disease in the northern hemisphere and has been rapidly increasing in both incidence and geographical distribution in many regions of Europe and North America. By analysis of long-term surveillance data (1995-2019) from across Norway (latitude 57°58'-71°08' N), we demonstrate a marked change in the within-year timing of Lyme borreliosis cases accompanying an increase in the annual number of cases. The seasonal peak in cases is now six weeks earlier than 25 years ago, exceeding seasonal shifts in plant phenology and previous model predictions. The seasonal shift occurred predominantly in the first 10 years of the study period. The concurrent upsurgence in case number and shift in case timing indicate a major change in the Lyme borreliosis disease system over recent decades. This study highlights the potential for climate change to shape the seasonal dynamics of vector-borne disease systems.


Subject(s)
Ixodes , Lyme Disease , Animals , Humans , Lyme Disease/microbiology , Europe/epidemiology , Ixodes/microbiology , Norway/epidemiology , North America
2.
Animals (Basel) ; 11(5)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925184

ABSTRACT

Herbivores like cervids usually graze on widely scattered forage, but anthropogenic food sources may cause spatial revisitation and aggregation, posing a risk for transmission of infectious diseases. In 2016, chronic wasting disease (CWD) was first detected in Norway. A legal regulation to ban supplemental feeding of cervids and to fence stored hay bales was implemented to lower aggregation of cervids. Knowledge of further patterns and causes of spatial revisitation can inform disease management. We used a recently developed revisitation analysis on GPS-positions from 13 red deer (Cervus elaphus) to identify the pattern of spatial clustering, and we visited 185 spatial clusters during winter to identify the causes of clustering. Anthropogenic food sources were found in 11.9% of spatial clusters, which represented 31.0% of the clusters in agricultural fields. Dumping of silage and hay bales were the main anthropogenic food sources (apart from agricultural fields), and unfenced hay bales were available despite the regulation. The probability of the clusters being in agricultural fields was high during winter. It may be necessary to find other ways of disposing of silage and enforcing the requirement of fencing around hay bales to ensure compliance, in particular during winters with deep snow.

3.
Curr Biol ; 30(17): 3444-3449.e4, 2020 09 07.
Article in English | MEDLINE | ID: mdl-32619482

ABSTRACT

Animals exhibit a diversity of movement tactics [1]. Tracking resources that change across space and time is predicted to be a fundamental driver of animal movement [2]. For example, some migratory ungulates (i.e., hooved mammals) closely track the progression of highly nutritious plant green-up, a phenomenon called "green-wave surfing" [3-5]. Yet general principles describing how the dynamic nature of resources determine movement tactics are lacking [6]. We tested an emerging theory that predicts surfing and the existence of migratory behavior will be favored in environments where green-up is fleeting and moves sequentially across large landscapes (i.e., wave-like green-up) [7]. Landscapes exhibiting wave-like patterns of green-up facilitated surfing and explained the existence of migratory behavior across 61 populations of four ungulate species on two continents (n = 1,696 individuals). At the species level, foraging benefits were equivalent between tactics, suggesting that each movement tactic is fine-tuned to local patterns of plant phenology. For decades, ecologists have sought to understand how animals move to select habitat, commonly defining habitat as a set of static patches [8, 9]. Our findings indicate that animal movement tactics emerge as a function of the flux of resources across space and time, underscoring the need to redefine habitat to include its dynamic attributes. As global habitats continue to be modified by anthropogenic disturbance and climate change [10], our synthesis provides a generalizable framework to understand how animal movement will be influenced by altered patterns of resource phenology.


Subject(s)
Animal Migration/physiology , Climate Change , Deer/physiology , Ecosystem , Plant Development , Plant Physiological Phenomena , Plants/metabolism , Animals , Geographic Information Systems , Herbivory
4.
Evol Appl ; 12(6): 1124-1135, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31297144

ABSTRACT

Wild animal populations experience selection pressures from both natural and anthropogenic sources. The availability of extensive pedigrees is increasing along with our ability to quantify the heritability and evolvability of phenotypic traits and thus the speed and potential for evolutionary change in wild populations. The environment may also affect gene expressions in individuals, which may in turn affect the potential of phenotypic traits to respond to selection. Knowledge about the relationship between the genetic and environmental components of phenotypic variation is particularly relevant, given ongoing anthropogenically driven global change. Using a quantitative genetic mixed model, we disentangled the genetic and environmental components of phenotypic variance in a large carnivore, the brown bear (Ursus arctos). We combined a pedigree covering ~1,500 individual bears over seven generations with location data from 413 bears, as well as data on bear density, habitat characteristics, and climatic conditions. We found a narrow-sense heritability of 0.24 (95% CrI: 0.06-0.38) for brown bear head size, showing that the trait can respond to selection at a moderate speed. The environment contributed substantially to phenotypic variation, and we partitioned this into birth year (5.9%), nonadditive among-individual genetic (15.0%), and residual (50.4%) environmental effects. Brown bear head circumference showed an evolvability of 0.2%, which can generate large changes in the trait mean over some hundreds of generations. Our study is among the first to quantify heritability of a trait in a hunted large carnivore population. Such knowledge about the degree to which species experiencing hunting can respond to selection is crucial for conservation and to make informed management decisions. We show that including important environmental variables when analyzing heritability is key to understanding the dynamics of the evolutionary potential of phenotypic traits.

5.
Sci Rep ; 9(1): 6137, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30992511

ABSTRACT

Ongoing global warming is now affecting migratory cycles in a large variety of taxa in seasonally variable environments. Disruption of migratory systems can cause population decline and affect ecosystem function across the globe. It is therefore urgent to understand the drivers of migration and how the different fitness limitations of the sexes affect migration, but studies seldom considered the full annual cycle. We analysed the annual migration cycle of 237 red deer (Cervus elaphus) in Norway and investigate how different seasonal limitations affected the variation in a suite of migration characteristics. We found fundamental differences in migration phenology between seasons, and migratory traits were much more variable in males. Spring migratory movements were characterized by longer distance roamed, lower speed, lasted longer, more frequent use of stopovers, timing was more synchronized and coincided with onset of plant growth, and with higher daily activity levels. Timing of autumn migration was more variable and not closely related to cease of plant growth. Our study emphasizes the benefits of studying the full annual cycle to gain further insight into the migration process, and how understanding the limitations of the full annual migration process of both sexes is critical for conservation purposes.


Subject(s)
Animal Migration , Deer , Animals , Deer/physiology , Female , Herbivory , Male , Seasons
6.
Proc Biol Sci ; 286(1899): 20190442, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30890094

ABSTRACT

With climate change, the effect of global warming on snow cover is expected to cause range expansion and enhance habitat suitability for species at their northern distribution limits. However, how this depends on landscape topography and sex in size-dimorphic species remains uncertain, and is further complicated for migratory animals following climate-driven seasonal resource fluctuations across vast landscapes. Using 11 years of data from a partially migratory ungulate at their northern distribution ranges, the red deer ( Cervus elaphus), we predicted sex-specific summer and winter habitat suitability in diverse landscapes under medium and severe global warming. We found large increases in future winter habitat suitability, resulting in expansion of winter ranges as currently unsuitable habitat became suitable. Even moderate warming decreased snow cover substantially, with no suitability difference between warming scenarios. Winter ranges will hence not expand linearly with warming, even for species at their northern distribution limits. Although less pronounced than in winter, summer ranges also expanded and more so under severe warming. Summer habitat suitability was positively correlated with landscape topography and ranges expanded more for females than males. Our study highlights the complexity of predicting future habitat suitability for conservation and management of size-dimorphic, migratory species under global warming.


Subject(s)
Animal Migration , Climate Change , Deer/physiology , Ecosystem , Animal Distribution , Animals , Conservation of Natural Resources , Female , Homing Behavior , Male , Norway , Seasons
7.
Nat Ecol Evol ; 2(1): 116-123, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29230025

ABSTRACT

Management of large carnivores is among the most controversial topics in natural resource administration. Regulated hunting is a centrepiece of many carnivore management programmes and, although a number of hunting effects on population dynamics, body-size distributions and life history in other wildlife have been observed, its effects on life history and demography of large carnivores remain poorly documented. We report results from a 30-year study of brown bears (Ursus arctos) analysed using an integrated hierarchical approach. Our study revealed that regulated hunting has severely disrupted the interplay between age-specific survival and environmental factors, altered the consequences of reproductive strategies, and changed reproductive values and life expectancy in a population of the world's largest terrestrial carnivore. Protection and sustainable management have led to numerical recovery of several populations of large carnivores, but managers and policymakers should be aware of the extent to which regulated hunting may be influencing vital rates, thereby reshaping the life history of apex predators.


Subject(s)
Conservation of Natural Resources , Life History Traits , Longevity , Reproduction , Ursidae/physiology , Animals , Female , Male , Population Dynamics , Sweden
8.
Ecol Evol ; 7(12): 4448-4455, 2017 06.
Article in English | MEDLINE | ID: mdl-28649354

ABSTRACT

Large herbivores gain nutritional benefits from following the sequential flush of newly emergent, high-quality forage along environmental gradients in the landscape, termed green wave surfing. Which landscape characteristics underlie the environmental gradient causing the green wave and to what extent landscape characteristics alone explain individual variation in nutritional benefits remain unresolved questions. Here, we combine GPS data from 346 red deer (Cervus elaphus) from four partially migratory populations in Norway with the satellite-derived normalized difference vegetation index (NDVI), an index of plant phenology. We quantify whether migratory deer had access to higher quality forage than resident deer, how landscape characteristics within summer home ranges affected nutritional benefits, and whether differences in landscape characteristics could explain differences in nutritional gain between migratory and resident deer. We found that migratory red deer gained access to higher quality forage than resident deer but that this difference persisted even after controlling for landscape characteristics within the summer home ranges. There was a positive effect of elevation on access to high-quality forage, but only for migratory deer. We discuss how the landscape an ungulate inhabits may determine its responses to plant phenology and also highlight how individual behavior may influence nutritional gain beyond the effect of landscape.

9.
Ecology ; 97(12): 3547-3553, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27912000

ABSTRACT

The forage maturation hypothesis (FMH) states that herbivores should follow the onset of growth in spring to obtain access to forage of higher quality and quantity, the so-called "green wave surfing." Several studies have found correlative evidence in support of this by associating animal movement with plant phenology. However, experimental manipulation of vast natural systems determining causes of large herbivore movement is usually beyond reach. The unique management system involving winter enclosures for wild red deer (Cervus elaphus) in Germany facilitated an opportunity for an experimental approach. We manipulated release dates of red deer into free-ranging conditions in spring, predicting increased overall access to high quality forage if released early (1 April), and more rapid initial movement speed towards higher elevation if released late (15 May). The latter had lower access to high quality forage than individuals released early, as they missed parts of the green wave. In strong support of the FMH, individuals released late moved at faster initial speed than early released individuals which tracked the green wave more closely, both settling when reaching similar elevations. This shows that red deer were flexible in their movements, and they can adapt to new patterns of phenology by phenotypic plasticity.


Subject(s)
Animal Migration/physiology , Deer/physiology , Herbivory/physiology , Animal Identification Systems , Animals , Female , Seasons
10.
Proc Natl Acad Sci U S A ; 113(50): 14450-14455, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27911775

ABSTRACT

Hunting is the predominant way of controlling many wildlife populations devoid of large carnivores. It subjects animals to mortality rates that far exceed natural rates and that differ markedly in which age, sex, or size classes are removed relative to those of natural predators. To explain the emerging selection pattern we develop behavioral microfoundations for a hunting model, emphasizing in particular the constraints given by the formal and informal norms, rules, and regulations that govern the hunter's choice. We show how a shorter remaining season, competition among hunters, lower sighting probabilities, and higher costs all lead to lower reservation values, i.e., an increased likelihood of shooting a particular animal. Using a unique dataset on seen and shot deer from Norway, we test and confirm the theoretical predictions in a recreational and meat-motivated hunting system. To achieve sustainability, future wildlife management should account for this predictable selection pressure.


Subject(s)
Conservation of Natural Resources , Deer , Firearms , Animals , Animals, Wild , Conservation of Natural Resources/legislation & jurisprudence , Conservation of Natural Resources/statistics & numerical data , Databases, Factual , Decision Making , Ecosystem , Female , Humans , Male , Models, Psychological , Norway , Recreation , Red Meat , Seasons , Social Conditions
11.
Ecology ; 97(4): 1058-1068, 2016 Apr.
Article in English | MEDLINE | ID: mdl-28792596

ABSTRACT

Autumn has to a large extent been neglected in the climate effect literature, yet autumn events, e.g., plant senescence and animal migration, affect fitness of animals differently than spring events. Understanding how variables including plant phenology influence timing of autumn migrations is important to gain a comprehensive understanding of the full annual cycle of migratory species. Here we use 13 yr of data from 60 male and 168 female red deer (Cervus elaphus) to identify triggers of autumn migration. We relate the timing of autumn migration to environmental variables like snow fall, temperature, and plant phenology (NDVI), and to onset of hunting, sex, and migration distance. Severe weather has been suggested as the main trigger of autumn migration, but we found that the majority of the individuals had left the summer range well before snow fall (80.3%) and frost (70.5%), and also before the peak deterioration in forage quality (71.9%). Declining temperatures were associated with a higher daily migration potential. Onset of hunting showed the largest effect on migration potential, with a marked increase during the first days of hunting. Individuals still present in the summer range when snow fall, frost, or peak forage deterioration occurred showed a significantly higher migration potential around these events. Males were less responsive to environmental cues, suggesting rutting activity, starting earlier in males, initiate movement prior to such conditions. Also, individuals with longer migration distances had a higher migration potential late in the season than individuals with shorter migration distances. Our study shows that factors beyond weather and plant phenology, such as onset of hunting, may be important triggers of autumn migration. Severe weather and forage deterioration were important triggers for the individuals experiencing this, which suggests a hierarchical response to environmental cues. The trade-off between staying longer in the summer range and increased energy expenditures if surprised by severe weather is asymmetric, and leaving well in advance can be seen as a risk-averse tactic.


Subject(s)
Animal Migration , Deer/physiology , Environmental Monitoring , Animals , Climate , Female , Male , Seasons , Snow
12.
J Anim Ecol ; 79(6): 1280-95, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20636345

ABSTRACT

1. There is a rapidly growing literature on how climate affects populations of vertebrates. For large herbivorous mammals, most attention has been paid to demographic responses to climate variation. Much less information is available regarding how climate affects animal behaviour, i.e. the climate mechanisms. Further, the appropriate measurement scale of climate variables remains debated. Here, we investigate how local climate variables determine home range sizes at four temporal scales using the Börger-method on GPS telemetry data from 47 female red deer Cervus elaphus L. in Norway. 2. If local climate operates directly on the immediate activity level of the animal, we predict home range sizes to show season-specific variation on short temporal scale (weekly-daily) related to temperature and precipitation. If local climate operate indirectly through plant growth, we rather predict variation in home range sizes to be apparent on longer time scales (biweekly-monthly), and during summer only. 3. At all time scales home range size was positively correlated with temperature during winter and negatively during summer, while the effect of precipitation was season- and scale-specific, except when accumulating as snow. Extensive snow cover decreased home range size, indicating direct effects of climate. 4. The effects of local climate was weaker at the shortest time scales (weekly-daily) compared to the longest time scales (monthly-biweekly), while the effects of day length on home range size was only apparent on the monthly and daily scale. At the longest time scales variation in local climate had a large effect on home range size. This is consistent with climatic variables operating indirectly through plant growth, but we cannot exclude a certain direct effect even at longer time scales. 5. We show how local climate-home range size correlations measured over different temporal scales can be used to infer direct and indirect climate mechanisms. Insight on the behavioural basis of responses to climate enables more accurate predictions of possible nonlinear relationships to future global warming.


Subject(s)
Deer/physiology , Ecosystem , Weather , Animals , Female , Photoperiod , Seasons , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...