Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 266(Pt 2): 131333, 2024 May.
Article in English | MEDLINE | ID: mdl-38574916

ABSTRACT

This study investigates the potential of utilizing green chemically treated spent coffee grounds (SCGs) as micro biofiller reinforcement in Poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) biopolymer composites. The aim is to assess the impact of varying SCG concentrations (1 %, 3 %, 5 %, and 7 %) on the functional, thermal, mechanical properties and biodegradability of the resulting composites with a PHBV matrix. The samples were produced through melt compounding using a twin-screw extruder and compression molding. The findings indicate successful dispersion and distribution of SCGs microfiller into PHBV. Chemical treatment of SCG microfiller enhanced the interfacial bonding between the SCG and PHBV, evidenced by higher water contact angles of the biopolymer composites. Field Emission Scanning Electron Microscopy (FE-SEM) confirmed the successful interaction of treated SCG microfiller, contributing to enhanced mechanical characteristics. A two-way ANOVA was conducted for statistical analysis. Mass losses observed after burying the materials in natural soil indicated that the composites degraded faster than the pure PHBV polymer suggesting that both composites are biodegradable, particularly at high levels of spent coffee grounds (SCG). Despite the possibility of agglomeration at higher concentrations, SCG incorporation resulted in improved functional properties, positioning the green biopolymer composite as a promising material for sustainable packaging and diverse applications.


Subject(s)
Coffee , Polyesters , Polyhydroxybutyrates , Coffee/chemistry , Polyesters/chemistry , Green Chemistry Technology , Biodegradable Plastics/chemistry
2.
Front Pharmacol ; 15: 1347551, 2024.
Article in English | MEDLINE | ID: mdl-38434704

ABSTRACT

Introduction: Essential oil‒based nanoemulsions (NEs) are the subjects of extensive investigation due to their potential to address a variety of oral health issues. NEs are delivery systems that improve lipid medicine solubility and distribution to intended sites. The goal of the current study was to create and enhance a self-nanoemulsifying drug delivery paradigm based on calendula oil (CO) and decorated with chitosan (CS) that could deliver posaconazole (PSZ) for the treatment of gingivitis. Method: Employing a response-surface Box‒Behnken design, PSZ-CO-CS NEs were created with varying amounts of PSZ (10, 15, and 20 mg), percentages of CO (6%, 12%, and 18%), and percentages of CS (0.5%, 1.5%, and 2.5%). Results and conclusion: The optimized formulation resulted in a 22-mm bacterial growth suppression zone, 25-mm fungal growth inhibition zone, droplet sizes of 110 nm, and a viscosity of 750 centipoise (cP). Using the appropriate design, the ideal formulation was produced; it contained 20 mg of PSZ, 18% of CO, and 1.35% of CS. Furthermore, the optimal formulation had a more controlled drug release, larger inhibition zones of bacterial and fungal growth, and desirable rheologic properties. Additionally, the optimized formulation substantially lowered the ulcer index in rats when tested against other formulations. Thus, this investigation showed that PSZ-CO-CS NEs could provide efficient protection against microbially induced gingivitis.

3.
Macromol Rapid Commun ; 45(9): e2300687, 2024 May.
Article in English | MEDLINE | ID: mdl-38430068

ABSTRACT

Cancer stands as a leading cause of global mortality, with chemotherapy being a pivotal treatment approach, either alone or in conjunction with other therapies. The primary goal of these therapies is to inhibit the growth of cancer cells specifically, while minimizing harm to healthy dividing cells. Conventional treatments, often causing patient discomfort due to side effects, have led researchers to explore innovative, targeted cancer cell therapies. Thus, biopolymer-based aerogels emerge as innovative platforms, showcasing unique properties that respond intelligently to diverse stimuli. This responsiveness enables precise control over the release of anticancer drugs, enhancing therapeutic outcomes. The significance of these aerogels lies in their ability to offer targeted drug delivery with increased efficacy, biocompatibility, and a high drug payload. In this comprehensive review, the author discuss the role of biopolymer-based aerogels as an emerging functionalized platforms in anticancer drug delivery. The review addresses the unique properties of biopolymer-based aerogels showing their smart behavior in responding to different stimuli including temperature, pH, magnetic and redox potential to control anticancer drug release. Finally, the review discusses the application of different biopolymer-based aerogel in delivering different anticancer drugs and also discusses the potential of these platforms in gene delivery applications.


Subject(s)
Antineoplastic Agents , Drug Delivery Systems , Gels , Neoplasms , Humans , Biopolymers/chemistry , Gels/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Neoplasms/drug therapy , Drug Carriers/chemistry , Animals
4.
J Biomol Struct Dyn ; : 1-11, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502682

ABSTRACT

The activity of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) is essential for the biosynthesis of sialic acid, which is involved in cellular processes in health and diseases. GNE contains an N-terminal epimerase domain and a C-terminal kinase domain (N-acetylmannosamine kinase, MNK). Mutations of the GNE protein led to hypoactivity of the enzyme and cause sialurea or autosomal recessive inclusion body myopathy/Nonaka myopathy. Here, we used all-atom molecular dynamics (MD) simulations to comprehend the folding, dynamics and conformational stability of MNK variants, including the wild type (WT) and three mutants (H677R, V696M and H677R/V696M). The deleterious and destabilizing nature of MNK mutants were predicted using different prediction tools. Results predicted that mutations modulate the stability, flexibility and function of MNK. The effect of mutations on the conformational stability and dynamics of MNK was next studied through the free-energy landscape (FEL), hydrogen-bonds and secondary structure changes. The FEL results show that the mutations interfere with various conformational transitions in both WT and mutants, exposing the structural underpinnings of protein destabilization and unfolding brought on by mutation. We discover that, when compared to the other two mutations, V696M and H677R/V696M, H677R has the most harmful effects. These findings have a strong correlation with published experimental studies that demonstrate how these mutations disrupt MNK activity. Hence, this computational study describes the structural details to unravel the mutant effects at the atomistic resolution and has implications for understanding the GNE's physiological and pathological role.Communicated by Ramaswamy H. Sarma.

5.
Int J Nanomedicine ; 19: 453-469, 2024.
Article in English | MEDLINE | ID: mdl-38250190

ABSTRACT

Introduction: Silver nanoparticles (AgNPs) have been found to exhibit unique properties which show their potential to be used in various therapies. Green synthesis of AgNPs has been progressively gaining acceptance due to its cost-effectiveness and energy-efficient nature. Objective: In the current study, aqueous extract of Thymus vulgaris (T. vulgaris) was used to synthesize the AgNPs using green synthesis techniques followed by checking the effectiveness and various biological activities of these AgNPs. Methods: At first, the plant samples were proceeded for extraction of aqueous extracts followed by chromatography studies to measure the phenolics and flavonoids. The synthesis and characterization of AgNPs were done using green synthesis techniques and were confirmed using Fourier transform infra-red (FT-IR) spectroscopy, UV-visible spectroscopy, scanning electron microscope (SEM), zeta potential, zeta sizer and X-Ray diffraction (XRD) analysis. After confirmation of synthesized AgNPs, various biological activities were checked. Results: The chromatography analysis detected nine compounds accounting for 100% of the total amount of plant constituents. The FT-IR, UV-vis spectra, SEM, zeta potential, zeta sizer and XRD analysis confirmed the synthesis of AgNPs and the variety of chemical components present on the surface of synthesized AgNPs in the plant extract. The antioxidant activity of AgNPs showed 92% inhibition at the concentration of at 1000 µg/mL. A greater inhibitory effect in anti-diabetic analysis was observed with synthesized AgNPs as compared to the standard AgNPs. The hemolytic activity was low, but despite low concentrations of hemolysis activity, AgNPs proved not to be toxic or biocompatible. The anti-inflammatory activity of AgNPs was observed by in-vitro and in-vivo approaches in range at various concentrations, while maximum inhibition occurs at 1000 µg (77.31%). Conclusion: Our data showed that the potential biological activities of the bioactive constituents of T. vulgaris can be enhanced through green synthesis of AgNPs from T. vulgaris aqueous extracts. In addition, the current study depicted that AgNPs have good potential to cure different ailments as biogenic nano-medicine.


Subject(s)
Metal Nanoparticles , Thymus Plant , Silver/pharmacology , Spectroscopy, Fourier Transform Infrared , Cell Death , Hemolysis
6.
BMC Oral Health ; 24(1): 38, 2024 01 07.
Article in English | MEDLINE | ID: mdl-38185744

ABSTRACT

BACKGROUND: Various methods can be used for creating zirconia dental restorations, including 3-dimensional (3D) printing and computer-aided design/ computer-aided manufacturing (CAD/CAM) milling. The fused deposition modeling (FDM) printing method for zirconia presents numerous advantages, albeit research on the mechanical properties of these materials and resultant restorations remains scarce. Such developments are undeniably intriguing and warrant further investigation. The objective of the present study was to evaluate the impact of the sintering firing cycle (Conventional vs. Speed sintering) on the flexural strength, flexural modulus, and Vickers Microhardness of milled vs. FDM printed zirconia. METHODS: A total of 60 bars (2 × 5 × 27 mm) were fabricated for flexural strength testing, along with 40 discs (12 × 1.5 mm) for Vickers microhardness testing. Half of the specimens underwent conventional sintering, while the other half underwent a speed sintering cycle. The flexural strength and modulus were determined by a three-point bending test in a universal testing machine. The microhardness of the specimens was evaluated using a Vickers microhardness tester. Statistical analysis was performed using a two-way ANOVA test with a post-hoc Tukey test (p < 0.05). RESULTS: CAD/CAM milled zirconia had significantly higher flexural strength and modulus than FDM-printed zirconia. The sintering process did not significantly affect the flexural strength or modulus of milled or FDM-printed zirconia. The milled speed sintering group had significantly higher values in the Vickers microhardness test compared to the other groups. CONCLUSIONS: The mechanical properties of FDM-printed zirconia specimens were not found to be comparable to those of milled zirconia. Speed sintering cycle may produce milled zirconia restorations with similar flexural strength and modulus to conventional sintering, and even higher Vickers Microhardness values.


Subject(s)
Computer-Aided Design , Flexural Strength , Humans , Analysis of Variance , Printing, Three-Dimensional
7.
Pharmaceutics ; 16(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276524

ABSTRACT

Pharmaceutics retracted the article "Amitriptyline-Based Biodegradable PEG-PLGA Self-Assembled Nanoparticles Accelerate Cutaneous Wound Healing in Diabetic Rats" [...].

8.
Int J Biol Macromol ; 259(Pt 2): 129190, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185304

ABSTRACT

Urease is one of the most significant enzymes in the industry. The objective of this research was to isolate and partially purify urease from Vicia sativa seeds with urease characterization. With a 6.4 % yield, the purification fold was 9.0. By using chromatography, it was determined that the isolated urease had a molecular weight of 55 kDa. The maximum urease activity was found following a 60-s incubation period at 40 °C and pH 8. The activity of urease was significantly boosted by a mean of calcium, barium, DL-dithiothreitol, Na2EDTA, and citrate (16.9, 26.6, 18.6, 13.6, and 31 %), respectively. But nickel and mercury caused inhibitory effects and completely inhibited urease activity, indicating the presence of a thiol (-SH) group in the enzyme active site. The Arrhenius plot was used to analyze the thermodynamic constants of activation, Ea, ΔH*, ΔG*, and ΔS*. The results showed that the values were 30 kJ/mol, 93.14 kJ/mol, 107.17 kJ/mol/K, and -40.80 J/mol/K, respectively. The significance of urease extraction from various sources may contribute to our understanding of the metabolism of urea in plants. The current report has novelty as it explained for the first time the kinetics and thermodynamics of hydrolysis of urea and inactivation of urease from V. sativa seeds.


Subject(s)
Urease , Vicia sativa , Urease/metabolism , Vicia sativa/metabolism , Thermodynamics , Seeds/metabolism , Urea/metabolism , Kinetics , Hydrogen-Ion Concentration
9.
Int J Biol Macromol ; 258(Pt 1): 128746, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38104681

ABSTRACT

Due to growing environmental concerns for better waste management, this study proposes developing a composite aerogel using cellulose nanofibers (CNF) and spent coffee grounds (SCG) through an eco-friendly method for efficient methylene blue (MB) adsorption. Adding SCG to the CNF aerogel altered the physical properties: it increases the volume (4.14 cm3 to 5.25 cm3) and density (0.018 to 0.022 g/cm3) but decrease the water adsorption capacity (2064 % to 1635 %). FTIR spectrum showed distinct functional groups in both all aerogels, showing hydroxyl, glyosidic bonds, and aromatic compounds. Additionally, SCG improved thermal stability of the aerogels. In term of adsorption efficacy, CNF-SCG40% aerogel as exceptionally well. According to Langmuir isotherm models, the adsorption of MB happened in a monolayer, with CNF-SCG40% showing a maximum adsorption capacity of 113.64 mg/g, surpassing CNF aerogel (58.82 mg/g). The study identified that the pseudo-second-order model effectively depicted the adsorption process, indicating a chemical-like interaction. This investigation successfully produced a single-use composite aerogel composed of CNF and SCG using an eco-friendly approach, efficiently adsorbing MB. By utilizing cost-effective materials and eco-friendly methods, this approach offers a sustainable solution for waste management, contributes to an eco-friendly industrial environment, and reduces production expenses and management costs.


Subject(s)
Cellulose , Coffee , Adsorption , Environment , Hydroxyl Radical , Methylene Blue
10.
Front Pharmacol ; 14: 1286133, 2023.
Article in English | MEDLINE | ID: mdl-37915413

ABSTRACT

Introduction: The health, development, and/or survival of a newborn can be impacted by congenital abnormalities such as cleft lip (CLP) and palate, one of alveolar bone defects that emerge thru pregnancy. Therefore, the primary purpose of this study is to use phospholipids-based phase separation in-situ gel (PPSG) in combination with bone morphogenetic protein-2 nanoemulsion (BMP-2-NE) to aid repairing alveolar bone defects. Methods: To investigate how formulation parameters, such as the concentrations of BMP-2 aqueous solution, LauroglycolTM FCC, and Labrafac PG oil, affect NE qualities including droplet size and stability index, an l-optimal co-ordinate exchange statistical design was opted. Injectable PPSG with the best NE formulation was tested for viscosity characteristics, gel strength, water absorption, and in-vitro BMP-2 release. In rabbits, the percentage of BMP-2 that was still in the maxilla after 14 days was assessed. Results: Collected results revealed that the droplet size and stability index of optimal NE were discovered to be 68 2.0 nm and 96 1.3%, respectively. When mixed with water, optimal BMP-2 NE loaded PPSG became viscous and reached a gel strength of 41 s, which is adequate for injectable in-situ gels. In comparison to BMP-2 solution loaded in-situ gel, the in-vivo studies indicated that the newly created BMP-2 NE loaded PPSG produced a sustained and controlled release of BMP-2 that continued for 336 h (14 days). Further, 8% of the BMP-2 was still entrapped and not completely dissolved after 14 days, thus, created formulation allowed a higher percentage of BMP-2 to remain in rabbits' maxilla for longer time. Conclusion: PPSG that has been loaded with BMP-2 NE may therefore be a promising, fruitful, and less painful paradigm for the noninvasive therapy of CLP with significant effect and extended release.

11.
Pharmaceutics ; 15(9)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37765310

ABSTRACT

In-depth studies on essential oil-based nanoemulsions (NEs) have centered on a variety of oral health issues. NEs improve the delivery of nonpolar active agents to sites and thereby boost the dissolution and distribution of the agents. Metronidazole-peppermint oil-tranexamic acid self-nanoemulsifying drug delivery systems (MZ-PO-TX-SNEDDS) were created and loaded into novel lozenges to act as antifungal, hemostatic, antimicrobial, and analgesic dosage forms after dental extractions. The design-of-experiments approach was used in creating them. To generate the NEs, different concentrations of MZ-PO (240, 180, and 120 mg), 2% TX (600, 450, and 300 mg), and Smix1:1 (600, 400, and 200 mg) were used. The ideal formulation had serum levels of 1530 U/mL of interleukin-6, a minimal inhibitory concentration against bacteria of 1.5 µg/mL, a droplet size of 96 nm, and a blood coagulation time of 16.5 min. Moreover, the produced NE offered better MZ release. The adopted design was used to produce the ideal formulation; it contained 240 mg of MZ-PO, 600 mg of 2% TX, and 600 mg of Smix1:1. It was incorporated into lozenges with acceptable characteristics and an improved capability for drug release. These lozenges had reasonable coagulation times, IL-6 serum levels, and MIC values. All of these characteristics are desirable for managing symptoms following tooth extractions. Therefore, these lozenges loaded with MZ-PO-TX-SNEDDs might be considered a beneficial paradigm for relieving complications encountered after tooth extractions.

12.
Front Pharmacol ; 14: 1228525, 2023.
Article in English | MEDLINE | ID: mdl-37576807

ABSTRACT

Objective: Telmisartan is an angiotensin receptor blocker (ARB) that specifically blocks angiotensin II type-1 receptors (AT1R). Telmisartan has been proven to have antidiabetic effects via a variety of mechanisms, and it can be utilized in some diabetic patients due to its dual benefit for hypertensive patients with type 2 DM (T2DM) and when the other oral antidiabetic medications are intolerable or contraindicated. However, its precise underlying hypoglycemic mechanism is still obscure. Aim of work: We sought to establish a link between telmisartan administration and myostatin expression in skeletal muscles of T2DM rat model as a potential hypoglycemic mechanism of telmisartan. Materials and Methods: 32 male albino rats were included in the study; 8 rats served as controls (group I). T2DM was inducted in the other 24 rats, which were then randomly subdivided into 3 groups (8 in each): (group II) the Diabetic group and (groups III and IV) which were treated with either telmisartan (8 mg/kg/day) or metformin (250 mg/kg/day) respectively via oral gavage for a 4-week period. Results: Telmisartan administration resulted in a significant improvement in OGTT, HOMA-IR, glucose uptake, and muscle mass/body ratios in Telmisartan group as compared to Diabetic group (p < 0.05). Additionally, telmisartan induced a significant boost in adiponectin and IL-10 serum levels with a substantial drop in TNF-α and IL-6 levels in Telmisartan group compared to diabetic rats (p < 0.05). Moreover, telmisartan significantly boosted SOD and GSH, and decreased MDA levels in the skeletal muscles of telmisartan group. Furthermore, a significant downregulation of myostatin and upregulation of insulin receptor, IRS-1, and IRS-3 genes in the skeletal muscles of Telmisartan group were also detected. Histologically, telmisartan attenuated the morphological damage in the skeletal muscle fibers compared to diabetic rats, as evidenced by a considerable decrease in the collagen deposition area percentage and a reduction in NF-kB expression in the muscle tissues of group III. Conclusion: Telmisartan administration dramatically reduced myostatin and NF-kB expressions in skeletal muscles, which improved insulin resistance and glucose uptake in these muscles, highlighting a novel antidiabetic mechanism of telmisartan in treating T2DM.

13.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37513837

ABSTRACT

Mucoadhesive nanosized crystalline aggregates (NCs) can be delivered by the gastrointestinal, nasal, or pulmonary route to improve retention at particular sites. Itopride hydrochloride (ITH) was selected as a drug candidate due to its absorption from the upper gastrointestinal tract. For drug localization and target-specific actions, mucoadhesive polymers are essential. The current work aimed to use second-generation mucoadhesive polymers (i.e., thiolated polymers) to enhance mucoadhesive characteristics. An ITH-NC formulation was enhanced using response surface methodology. Concentrations of Tween 80 and Polyvinyl pyrrolidone (PVP K-30) were selected as independent variables that could optimize the formulation to obtain the desired entrapment efficacy and particle size/diameter. It was found that a formulation prepared using Tween 80 at a concentration of 2.55% and PVP K-30 at 2% could accomplish the goals for which an optimized formulation was needed. Either xanthan gum (XG) or thiolated xanthan gum (TXG) was added to the optimized formulation to determine how they affected the mucoadhesive properties of the formulation. Studies demonstrated that there was an initial burst release of ITH from the ITH/NC/XG and ITH/NC/TXG in the early hours and then a steady release for 24 h. As anticipated, the TXG formulation had a better mucin interaction, and this was needed to ensure that the drug was distributed to tissues that produce mucus. Finally, at the measured concentrations, the ITH/NC showed minimal cytotoxicity against lung cells, indicating that it may have potential for additional in vivo research. The enhanced bioavailability and mean residence time of the designed mucoadhesive NC formulations were confirmed by pharmacokinetic studies.

14.
Pharmaceutics ; 15(7)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37514173

ABSTRACT

Here, we evaluate the feasibility of co-loading plain ranitidine hydrochloride (RHCl) and microencapsulated flurbiprofen (FBP) in a Lycoat® RS780-based oral fast disintegrating film (ODF). These films were developed by the solvent casting method to minimize the adverse effects of FBP and reduce the dosage form burden on patients. Optimized FBP microparticles (M3) with an average size of 21.2 ± 9.2 µm were loaded alone (F1) and in combination with plain RHCl (F2) in the composite ODF. All films were evaluated physicomechanically and physicochemically. These films were resilient, flexible, and disintegrated within thirty seconds. SEM images showed intact FBP microparticles in both formulations and, moreover, did not observe an interaction between the drug and film components. Microencapsulated FBP was released in a controlled manner over 48 h from the proposed formulations, while RHCl was released within 5 min from F2. After in vitro evaluation, formulations were also tested for in vivo anti-inflammatory activity, cytokine (TNF-α and IL-6) levels, and gastroprotective effects in rats. The anti-inflammatory activity and gastroprotective effect of F2 were markedly higher than pure FBP and other synthesized formulations (M3 and F1). The average score of gastric lesions was in the order of pure FBP (15.5 ± 1.32) > M3 (8 ± 2) > F1 (1 ± 0.5) > F2 (0.5 ± 0) > control (0). Additionally, F2 showed a sustained anti-inflammatory effect up to 10 h in the rat paw edema model. Furthermore, F2 also markedly reduced TNF-α and IL-6 levels. Conclusively, the Lycoat® RS780-based composite film could be a promising carrier for the co-loading of microencapsulated FBP with RHCl. In the future, an optimized formulation (F2) could be capable of countering the issues related to multiple drug administration in geriatric patients and evading the gastric irritation associated with FBP.

15.
Front Bioeng Biotechnol ; 11: 1173883, 2023.
Article in English | MEDLINE | ID: mdl-37229490

ABSTRACT

Hydrogels are crosslinked three-dimensional networks, and their properties can be easily tuned to target the various segments of the gastrointestinal tract (GIT). Cetirizine HCl (CTZ HCl) is an antihistaminic drug, which when given orally can upset the stomach. Moreover, this molecule has shown maximum absorption in the intestine. To address these issues, we developed a pH-responsive semi-interpenetrating polymer network (semi-IPN) for the delivery of CTZ HCl to the lower part of the GIT. Initially, 10 different formulations of itaconic acid-grafted-poly (acrylamide)/aloe vera [IA-g-poly (AAm)/aloe vera] semi-IPN were developed by varying the concentration of IA and aloe vera using the free radical polymerization technique. Based on swelling and sol-gel analysis, formulation F5 containing 0.3%w/w aloe vera and 6%w/w IA was chosen as the optimum formulation. The solid-state characterization of the optimized formulation (F5) revealed a successful incorporation of CTZ HCl in semi-IPN without any drug-destabilizing interaction. The in vitro drug release from F5 showed limited release in acidic media followed by a controlled release in the intestinal environment for over 72 h. Furthermore, during the in vivo evaluation, formulation F5 did not affect the hematological parameters, kidney, and liver functions. Clinical observations did not reveal any signs of illness in rabbits treated with hydrogels. Histopathological images of vital organs of treated animals showed normal cellular architecture. Thus, the results suggest a non-toxic nature and overall potential of the developed formulation as a targeted drug carrier.

16.
Int J Biol Macromol ; 242(Pt 2): 124809, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37178877

ABSTRACT

Herein, we described for the first time, an efficient biogenic synthesis of APTs-AgNPs using acid protease from Melilotus indicus leaf extract. The acid protease (APTs) has an essential role in the stabilization, reduction, and capping of APTs-AgNPs. The crystalline nature, size, and surface morphology of APTs-AgNPs were examined using different techniques such as XRD, UV, FTIR, SEM, EDS, HRTEM, and DLS analysis. The generated APTs-AgNPs demonstrated notable performance as dual functionality (photocatalyst and antibacterial disinfection). By destroying 91 % of methylene blue (MB) in <90 min of exposure, APTs-AgNPs demonstrated remarkable photocatalytic activity. APTs-AgNPs also showed remarkable stability as a photocatalyst after five test cycles. Furthermore, the APTs-AgNPs was found to be a potent antibacterial agent with inhibition zones of 30(±0.5 mm), 27(±0.4 mm), 16(±0.1 mm), and 19(±0.7 mm) against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, respectively, under both light and dark conditions. Furthermore, APTs-AgNPs effectively scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, demonstrating their potent antioxidant activity. The outcomes of this study thus demonstrates the dual functionality of APTs-AgNPs produced using the biogenic approach method as a photocatalyst and an antibacterial agent for effective microbial and environmental control.


Subject(s)
Metal Nanoparticles , Peptide Hydrolases , Peptide Hydrolases/pharmacology , Silver/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Endopeptidases/pharmacology , Escherichia coli , Microbial Sensitivity Tests
17.
Drug Deliv ; 30(1): 2184311, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36846914

ABSTRACT

Numerous problems affect oral health, and intensive research is focused on essential oil-based nanoemulsions that might treat prevent or these problems. Nanoemulsions are delivery systems that enhance the distribution and solubility of lipid medications to targeted locations. Turmeric (Tur)- and curry leaf oil (CrO)-based nanoemulsions (CrO-Tur-self-nanoemulsifying drug delivery systems [SNEDDS]) were developed with the goal of improving oral health and preventing or treating gingivitis. They could be valuable because of their antibacterial and anti-inflammatory capabilities. CrO-Tur-SNEDDS formulations were produced using the response surface Box-Behnken design with different concentrations of CrO (120, 180, and 250 mg), Tur (20, 35, and 50 mg), and Smix 2:1 (400, 500, and 600 mg). The optimized formulation had a bacterial growth inhibition zone of up to 20 mm, droplet size of less than 140 nm, drug-loading efficiency of 93%, and IL-6 serum levels of between 950 ± 10 and 3000 ± 25 U/ml. The optimal formulation, which contained 240 mg of CrO, 42.5 mg of Tur, and 600 mg of Smix 2:1, was created using the acceptable design. Additionally, the best CrO-Tur-SNEDDS formulation was incorporated into a hyaluronic acid gel, and thereafter it had improved ex-vivo transbuccal permeability, sustained in-vitro release of Tur, and large bacterial growth suppression zones. The optimal formulation loaded into an emulgel had lower levels of IL-6 in the serum than the other formulations evaluated in rats. Therefore, this investigation showed that a CrO-Tur-SNEDDS could provide strong protection against gingivitis caused by microbial infections.


Subject(s)
Hyaluronic Acid , Nanoparticles , Animals , Rats , Administration, Oral , Curcuma , Drug Delivery Systems , Emulsions , Interleukin-6 , Particle Size , Plant Leaves , Research Design , Solubility , Gingivitis
18.
Curr Probl Cardiol ; 48(7): 101661, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36822564

ABSTRACT

Coronary artery disease (CAD) is a serious health problem that causes a considerable number of mortality in a number of affluent nations throughout the world. The estimated death encountered in many developed countries includes including Pakistan, reached 111,367 and accounted for 9.87% of all deaths, despite the mortality rate being around 7.2 million deaths per year, or 12% of all estimated deaths accounted annually around the globe, with improved health systems. Atherosclerosis progressing causes the coronary arteries to become partially or completely blocked, which results in CAD. Additionally, smoking, diabetes mellitus, homocystinuria, hypertension, obesity, hyperlipidemia, and psychological stress are risk factors for CAD. The symptoms of CAD include angina which is described as a burning, pain or discomfort in the chest, nausea, weakness, shortness of breath, lightheadedness, and pain or discomfort in the arms or shoulders. Atherosclerosis and thrombosis are the 2 pathophysiological pathways most frequently involved in acute coronary syndrome (ACS). Asymptomatic plaque disruption, plaque bleeding, symptomatic coronary blockage, and myocardial infarction are the prognoses for CAD. In this review, we will focus on medicated therapy which is being employed for the relief of angina linked with CAD including antiplatelet medicines, nitrates, calcium antagonists, blockers, catheterization, and the frequency of recanalized infarct-related arteries in patients with acute anterior wall myocardial infarction (AWMI). Furthermore, we have also enlightened the importance of biomarkers that are helpful in the diagnosis and management of CAD.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Humans , Coronary Artery Disease/diagnosis , Coronary Artery Disease/epidemiology , Coronary Artery Disease/therapy , Angina Pectoris , Risk Factors , Biomarkers , Catheterization
19.
Drug Deliv ; 30(1): 2173337, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36708105

ABSTRACT

The use of essential oil-based nanoemulsions (NEs) has been the subject of extensive research on a variety of conditions affecting the oral cavity. NEs are delivery methods that improve the solubility and distribution of lipid medicines to the intended areas. Because of their antibacterial and antifungal properties, itraconazole and thyme oil-based self-nanoemulsifying drug delivery systems (ItZ-ThO-SNEDDS) were created to protect oral health against oral microorganisms. The ItZ-ThO-SNEDDS were created utilizing an extreme verices mixture design, and varying concentrations of ThO (10% and 25%), labrasol (40% and 70%), and transcutol (20% and 40%) were used. The ItZ-ThO-SNEDDS had droplet sizes of less than 250 nm, a drug-loading efficiency of up to 64%, and a fungal growth inhibition zone of up to 20 mm. The accepted design was used to obtain the ideal formulation, which contained ThO in the amount of 0.18 g/ml, labrasol 0.62 g/ml, and transcutol 0.2 g/ml. The best ItZ-ThO-SNEDDS formulation was incorporated into a honey-based gel, which demonstrated improved release of ItZ in vitro and improved transbuccal permeation ex vivo. In addition, when compared with various formulations tested in rats, the optimized loaded emulgel decreased the ulcer index. This study therefore demonstrated that the ItZ-ThO-SNEDDS could offer an effective defense against oral diseases caused by microbial infections.


Subject(s)
Candidiasis, Oral , Honey , Nanoparticles , Rats , Animals , Itraconazole/pharmacology , Surface-Active Agents , Emulsions , Drug Delivery Systems/methods , Solubility , Administration, Oral , Particle Size
20.
Pharmaceutics ; 14(12)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36559258

ABSTRACT

It is important to create new generations of materials that can destroy multidrug-resistant bacterial strains, which are a serious public health concern. This study focused on the biosynthesis of an essential oil entrapped in titanium dioxide (TiO2) calcium alginate-based microspheres. In this research, calcium alginate-based microspheres with entrapped TiO2 nanoparticles and cinnamon essential oil (CI-TiO2-MSs) were synthesized, using an aqueous extract of Nigella sativa seeds for TiO2 nanoparticle preparation, and the ionotropic gelation method for microsphere preparation. The microspheres obtained were spherical, uniformly sized, microporous, and rough surfaced, and they were fully loaded with cinnamon essential oil and TiO2 nanoparticles. The synthesized microspheres were analyzed for antibacterial activity against the clinical multidrug-resistant strain of Staphylococcus aureus. Disc diffusion and flow cytometry analysis revealed strong antibacterial activity by CI-TiO2-MSs. The synthesized CI-TiO2-MSs were characterized by the SEM/EDX, X-ray diffraction, and FTIR techniques. Results showed that the TiO2 nanoparticles were spherical and 99 to 150 nm in size, whereas the CI-TiO2-MSs were spherical and rough surfaced. Apoptosis analysis and SEM micrography revealed that the CI-TiO2-MSs had strong bactericidal activity against S. aureus. The in vitro antibacterial experiments proved that the encapsulated CI-TiO2-MSs had strong potential for use as a prolonged controlled release system against multidrug-resistant clinical S. aureus.

SELECTION OF CITATIONS
SEARCH DETAIL
...