Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 253(Pt 3): 126823, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37703975

ABSTRACT

The increasing frequency of Dengue is a cause of severe epidemics and therefore demands strategies for effective prevention, diagnosis, and treatment. DENV-protease is being investigated as a potential therapeutic target. However, due to the flat and highly charged active site of the DENV-protease, designing orthosteric medicines is very difficult. In this study, we have done a thorough analysis of pH-dependent conformational changes in recombinantly expressed DENV protease using various spectroscopic techniques. Our spectroscopic study of DENV protease (NS2B-NS3pro) at different pH conditions gives important insights into the dynamicity of structural conformation. At physiological pH, the DENV-protease exists in a random-coiled state. Lowering the pH promotes the formation of alpha-helical and beta-sheet structures i.e. gain of secondary structure as shown by Far-UV CD. The light scattering and Thioflavin T (ThT)-binding assay proved the aggregation-prone tendency of DENV-protease at pH 4.0. Further, the confocal microscopy image intensity showed the amorphous aggregate formation of DENV protease at pH 4.0. Thus, the DENV protease acquires different conformations with changes in pH conditions. Together, these results have the potential to facilitate the design of a conformation destabilizer-based therapeutic strategy for dengue fever.


Subject(s)
Dengue Virus , Serine Endopeptidases , Serine Endopeptidases/chemistry , Viral Nonstructural Proteins/chemistry , Catalytic Domain , Hydrogen-Ion Concentration , Protease Inhibitors/pharmacology
2.
Int J Biol Macromol ; 237: 124219, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36990415

ABSTRACT

Protein misfolding and related formation of amyloid fibrils are associated with several conformational diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), prion diseases, and Diabetes mellitus, Type 2 (DM-II). Several molecules including antibiotics, polyphenols, flavonoids, anthraquinones, and other small molecules are implicated to modulate amyloid assembly. The stabilization of the native forms of the polypeptides and prevention of their misfolding and aggregation are of clinical and biotechnological importance. Among the natural flavonoids, luteolin is of great importance because of its therapeutic role against neuroinflammation. Herein, we have explored the inhibitory effect of luteolin (LUT) on aggregation of a model protein, human insulin (HI). To understand the molecular mechanism of the inhibition of aggregation of HI by LUT, we employed molecular simulation, UV-Vis, fluorescence, and circular dichroism (CD) spectroscopies along with the dynamic light scattering (DLS). The analysis of the tuning of the HI aggregation process by luteolin revealed that interaction of HI with LUT resulted in the decrease in binding of the various fluorescent dyes, such as thioflavin T (ThT) and 8-anilinonaphthalene-1-sulfonic acid (ANS) to this protein. Retention of the native-like CD spectra and resistance to the aggregation in the presence of LUT has confirmed the aggregation inhibitory potential of LUT. The maximum inhibitory effect was found at the protein-to-drug ratio of 1:12, and no significant change was observed beyond this concentration.


Subject(s)
Amyloidogenic Proteins , Luteolin , Humans , Amyloid/chemistry , Insulin/chemistry , Peptides
3.
Int J Biol Macromol ; 233: 123623, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36773857

ABSTRACT

Numerous pathophysiological conditions known as amyloidosis, have been connected to protein misfolding leading to aggregation of proteins. Inhibition of cytotoxic aggregates or disaggregation of the preformed fibrils is thus one of the important strategies in the prevention of such diseases. Growing interest and exploration of identification of small molecules mainly natural compounds can prevent or delay amyloid fibril formation. We examined the mechanism of interaction and inhibition of human lysozyme (HL) aggregates with luteolin (LT). Biophysical and computational approaches have been employed to study the effect of LT on HL amyloid aggregation. Transmission Electronic Microscopy, Thioflavin T fluorescence, UV-vis spectroscopy, and RLS demonstrates that LT inhibit HL fibril formation. ANS fluorescence and hemolytic assay was also employed to examine the effect of the LT on toxicity of HL aggregation. Docking and molecular dynamics results showed that LT interacted with HL via hydrophobic and hydrogen interactions, thus reducing fibrillation levels. These findings highlight the benefit of polyphenols as safe therapy for preventing amyloid related diseases.


Subject(s)
Amyloidosis , Luteolin , Humans , Luteolin/pharmacology , Muramidase/chemistry , Amyloid/chemistry , Amyloidogenic Proteins
4.
J Biomol Struct Dyn ; 40(20): 10507-10517, 2022.
Article in English | MEDLINE | ID: mdl-34121621

ABSTRACT

Geminiviruses consist of a single-stranded DNA genome that replicates by a rolling circle (RCR) and recombination-dependent (RDR) modes of replication. The AC1 or Rep is the indispensable viral protein required for the RCR mode of replication. Since these viruses encode only a few proteins, they depend on several host factors for replication, transcription, and other physiological processes. To get insights into the repertoire of host factors influencing the replication of geminiviruses, we performed phage display experiments which led to the identification of putative mungbean yellow mosaic India virus (MYMIV) Rep interacting host proteins. These proteins might directly or indirectly participate in geminivirus biology. MCM3 was one of the Rep-interacting partners obtained in the phage display results. Using bimolecular fluorescence complementation (BiFC), the interaction of the MYMIV Rep with Arabidopsis thaliana MCM3 (AtMCM3) was confirmed. We report the involvement of AtMCM3 in the replication of MYMIV DNA through an ex vivo system. The physiological relevance of the interaction between AtMCM3 and MYMIV Rep is reflected by yeast replication assay.Communicated by Ramaswamy H. Sarma.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Geminiviridae , Minichromosome Maintenance Complex Component 3 , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/virology , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Replication , DNA, Viral/genetics , DNA, Viral/metabolism , Geminiviridae/physiology , Minichromosome Maintenance Complex Component 3/genetics , Minichromosome Maintenance Complex Component 3/metabolism , Virus Replication , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
5.
Protoplasma ; 253(2): 467-75, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25944245

ABSTRACT

Minichromosome maintenance 2-7 (MCM2-7) proteins are conserved eukaryotic replicative factors essential for the DNA replication at its initiation and elongation step, and act as a licensing factor. The MCM2-7 and MCM4/6/7subcomplex exhibit DNA helicase activity, and are therefore regarded as the replicative helicase. The MCM proteins have not been studied in detail in plant system. Here, we present the biochemical characterization of Arabidopsis thaliana MCM3 single subunit and show that it exhibits in vitro unwinding and ATPase activities. AtMCM3 shows a greater unwinding activity with 5' forked partial DNA duplex substrate as compared to 3' forked and non-forked substrates. ATP and magnesium ion are indispensable for its DNA helicase activity. Specifically, ATP and dATP are the preferred nucleotides for its unwinding activity. The directionality of the AtMCM3 has been determined to be in 3' to 5' direction. The oligomerization status of AtMCM3 single subunit protein indicates that it is present in different multimeric forms. The unraveling of the helicase activity of AtMCM3 will provide better insights into the plant DNA replication.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis/enzymology , Minichromosome Maintenance Complex Component 3/chemistry , Adenosine Triphosphate/chemistry , Amino Acid Sequence , Arabidopsis Proteins/physiology , Biocatalysis , DNA, Plant/chemistry , DNA, Single-Stranded/chemistry , Hydrolysis , Minichromosome Maintenance Complex Component 3/physiology , Protein Binding , Protein Structure, Quaternary
6.
Arch Virol ; 160(2): 375-87, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25449306

ABSTRACT

Geminiviruses are DNA viruses that infect several economically important crops, resulting in a reduction in their overall yield. These plant viruses have circular, single-stranded DNA genomes that replicate mainly by a rolling-circle mechanism. Geminivirus infection results in crosstalk between viral and cellular factors to complete the viral life cycle or counteract the infection as part of defense mechanisms of host plants. The geminiviral replication initiator protein Rep is the only essential viral factor required for replication. It is multifunctional and is known to interact with a number of host factors to modulate the cellular environment or to function as a part of the replication machinery. This review provides a holistic view of the research related to the viral Rep protein and various host factors involved in geminiviral DNA replication. Studies on the promiscuous nature of geminiviral satellite DNAs are also reviewed.


Subject(s)
DNA Replication/genetics , DNA, Circular/genetics , DNA, Satellite/genetics , DNA-Binding Proteins/genetics , Geminiviridae/genetics , DNA, Circular/biosynthesis , DNA, Viral/biosynthesis , DNA, Viral/genetics , Plant Diseases/virology , Protein Binding , Viral Proteins/genetics , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...