Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 33(18)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35051915

ABSTRACT

Cathodoluminescence mapping is used as a contactless method to probe the electron concentration gradient of Te-doped GaAs nanowires. The room temperature and low temperature (10 K) cathodoluminescence analysis method previously developed for GaAs:Si is first validated on five GaAs:Te thin film samples, before extending it to the two GaAs:Te NW samples. We evidence an electron concentration gradient ranging from below 1 × 1018cm-3to 3.3 ×1018cm-3along the axis of a GaAs:Te nanowire grown at 640 °C, and a homogeneous electron concentration of around 6-8 × 1017cm-3along the axis of a GaAs:Te nanowire grown at 620 °C. The differences in the electron concentration levels and gradients between the two nanowires is attributed to different Te incorporation efficiencies by vapor-solid and vapor-liquid-solid processes.

3.
Micromachines (Basel) ; 11(2)2020 Feb 23.
Article in English | MEDLINE | ID: mdl-32102171

ABSTRACT

Optical circular dichroism (CD) is an important phenomenon in nanophotonics, that addresses top level applications such as circular polarized photon generation in optics, enantiomeric recognition in biophotonics and so on. Chiral nanostructures can lead to high CD, but the fabrication process usually requires a large effort, and extrinsic chiral samples can be produced by simpler techniques. Glancing angle deposition of gold on GaAs nanowires can (NWs) induces a symmetry breaking that leads to an optical CD response that mimics chiral behavior. The GaAs NWs have been fabricated by a self-catalyzed, bottom-up approach, leading to large surfaces and high-quality samples at a relatively low cost. Here, we investigate the second harmonic generation circular dichroism (SHG-CD) signal on GaAs nanowires partially covered with Au. SHG is a nonlinear process of even order, and thus extremely sensitive to symmetry breaking. Therefore, the visibility of the signal is very high when the fabricated samples present resonances at first and second harmonic frequencies (i.e., 800 and 400 nm, in our case).

4.
Nanoscale Res Lett ; 14(1): 344, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31728662

ABSTRACT

The performance of Ohmic contacts applied to semiconductor nanowires (NWs) is an important aspect for enabling their use in electronic or optoelectronic devices. Due to the small dimensions and specific surface orientation of NWs, the standard processing technology widely developed for planar heterostructures cannot be directly applied. Here, we report on the fabrication and optimization of Pt/Ti/Pt/Au Ohmic contacts for p-type GaAs nanowires grown by molecular beam epitaxy. The devices were characterized by current-voltage (IV) measurements. The linearity of the IV characteristics curves of individual nanowires was optimized by adjusting the layout of the contact metal layers, the surface treatment prior to metal evaporation, and post-processing thermal annealing. Our results reveal that the contact resistance is remarkably decreased when a Pt layer is deposited on the GaAs nanowire prior to the traditional Ti/Pt/Au multilayer layout used for p-type planar GaAs. These findings are explained by an improved quality of the metal-GaAs interface, which was evidenced by grazing incidence X-ray diffraction measurements in similar metallic thin films deposited on GaAs (110) substrates. In particular, we show that Ti exhibits low degree of crystallinity when deposited on GaAs (110) surface which directly affects the contact resistance of the NW devices. The deposition of a thin Pt layer on the NWs prior to Ti/Pt/Au results in a 95% decrease in the total electrical resistance of Be-doped GaAs NWs which is associated to the higher degree of crystallinity of Pt than Ti when deposited directly on GaAs (110).

5.
Nanotechnology ; 30(33): 335709, 2019 Aug 16.
Article in English | MEDLINE | ID: mdl-30995612

ABSTRACT

Effective and controllable doping is instrumental for enabling the use of III-V semiconductor nanowires (NWs) in practical electronics and optoelectronics applications. To this end, dopants are incorporated during self-catalyzed growth via vapor-liquid-solid mechanism through the catalyst droplet or by vapor-solid mechanism of the sidewall growth. The interplay of these mechanisms together with the competition between axial elongation and radial growth of NWs can result in dopant concentration gradients along the NW axis. Here, we report an investigation of Be-doped p-type GaAs NWs grown by the self-catalyzed method on lithography-free Si/SiO x templates. The influence of dopant incorporation on the structural properties of the NWs is analyzed by scanning and transmission electron microscopy. By combining spatially resolved Raman spectroscopy and transport characterization, we are able to estimate the carrier concentration, mobility and resistivity on single-NW level. We show that Be dopants are incorporated predominantly by vapor-solid mechanism for low Be flux, while the relative contribution of vapor-liquid-solid incorporation is increased for higher Be flux, resulting in axial dopant gradients that depend on the nominal doping level.

6.
Sci Rep ; 9(1): 5040, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30911080

ABSTRACT

Chiral optical response is an inherent property of molecules and nanostructures, which cannot be superimposed on their mirror images. In specific cases, optical chirality can be observed also for symmetric structures. This so-called extrinsic chirality requires that the mirror symmetry is broken by the geometry of the structure together with the incident or emission angle of light. From the fabrication point of view, the benefit of extrinsic chirality is that there is no need to induce structural chirality at nanoscale. This paper reports demonstration extrinsic chirality of photoluminescence emission from asymmetrically Au-coated GaAs-AlGaAs-GaAs core-shell nanowires fabricated on silicon by a completely lithography-free self-assembled method. In particular, the extrinsic chirality of PL emission is shown to originate from a strong symmetry breaking of fundamental HE11 waveguide modes due to the presence of the asymmetric Au coating, causing preferential emission of left and right-handed emissions in different directions in the far field.

SELECTION OF CITATIONS
SEARCH DETAIL
...