Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 11(4)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37112776

ABSTRACT

Despite all successful efforts to develop a COVID-19 vaccine, the need to evaluate alternative antigens to produce next-generation vaccines is imperative to target emerging variants. Thus, the second generation of COVID-19 vaccines employ more than one antigen from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to induce an effective and lasting immune response. Here, we analyzed the combination of two SARS-CoV-2 viral antigens that could elicit a more durable immune response in both T- and B-cells. The nucleocapsid (N) protein, Spike protein S1 domain, and receptor binding domain (RBD) of the SARS-CoV-2 spike surface glycoproteins were expressed and purified in a mammalian expression system, taking into consideration the posttranscriptional modifications and structural characteristics. The immunogenicity of these combined proteins was evaluated in a murine model. Immunization combining S1 or RBD with the N protein induced higher levels of IgG antibodies, increased the percentage of neutralization, and elevated the production of cytokines TNF-α, IFN-γ, and IL-2 compared to the administration of a single antigen. Furthermore, sera from immunized mice recognized alpha and beta variants of SARS-CoV-2, which supports ongoing clinical results on partial protection in vaccinated populations, despite mutations. This study identifies potential antigens for second-generation COVID-19 vaccines.

2.
Protein Expr Purif ; 200: 106167, 2022 12.
Article in English | MEDLINE | ID: mdl-36057422

ABSTRACT

The ß1-subunit of the Na+/K+-ATPase is a cell membrane protein, beyond its classic functions, it is also a cell adhesion molecule. ß1-subunits on the lateral membrane of dog kidney epithelial cells trans-interact with ß1-subunits from another neighboring cells. The ß-ß interaction is essential for the formation and stabilization of intercellular junctions. Previous studies on site-directed mutagenesis and in silico revealed that the interaction interface involves residues 198-207 and 221-229. However, it is necessary to report the interaction interface at the structural level experimentally. Here, we describe the successful cloning, overexpression in E. coli, and purification of the extracellular domain of the ß1-subunit from inclusion bodies. Experimental characterization by size exclusion chromatography and DLS indicated similar hydrodynamic properties of the protein refolded. Structural analysis by circular dichroism and Raman spectroscopy revealed the secondary structures in the folded protein of type ß-sheet, α-helix, random coil, and turn. We also performed ß1-ß1 interaction assays with the recombinant protein, showing dimers' formation (6xHisß1-ß1). Given our results, the recombinant extracellular domain of the ß1-subunit is highly similar to the native protein, therefore the current work in our laboratory aims to characterize at the atomic level the interaction interface between EDß1.


Subject(s)
Escherichia coli , Sodium-Potassium-Exchanging ATPase , Animals , Cell Adhesion Molecules/metabolism , Cell Membrane/metabolism , Dogs , Epithelial Cells , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sodium-Potassium-Exchanging ATPase/chemistry , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism
3.
Pharmacol Rep ; 74(6): 1315-1325, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35930194

ABSTRACT

BACKGROUND: COVID-19, the disease caused by SARS-CoV-2 virus infection, has been a major public health problem worldwide in the last 2 years. SARS-CoV-2-dependent activation of innate immune receptors contributes to the strong local and systemic inflammatory reaction associated with rapid disease evolution. The receptor-binding domain (RBD) of Spike (S) viral protein (S-RBD) is essential for virus infection and its interacting molecules in target cells are still under identification. On the other hand, the search for accessible natural molecules with potential therapeutic use has been intense and remains an active field of investigation. METHODS: C57BL6/J (control) and Toll-like receptor (TLR) 4-deficient (Lps del) mice were nebulized with recombinant S-RBD. Tumor Necrosis Factor-alpha (TNF-α) and Interleukin (IL)-6 production in bronchoalveolar lavages (BALs) was determined by enzyme-linked immunosorbent assay (ELISA). Lung-infiltrating cells recovered in BALs were quantified by hematoxylin-eosin (H&E) stain. In selected groups of animals, the natural compound Jacareubin or dexamethasone were intraperitoneally (ip) administered 2 hours before nebulization. RESULTS: A rapid lung production of TNF-α and IL-6 and cell infiltration was induced by S-RBD nebulization in control but not in Lps del mice. Pre-treatment with Jacareubin or dexamethasone prevented S-RBD-induced TNF-α and IL-6 secretion in BALs from control animals. CONCLUSIONS: S-RBD domain promotes lung TNF-α and IL-6 production in a TLR4-dependent fashion in C57BL6/J mice. Xanthone Jacareubin possesses potential anti-COVID-19 properties that, together with the previously tested anti-inflammatory activity, safety, and tolerance, make it a valuable drug to be further investigated for the treatment of cytokine production caused by SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , Spike Glycoprotein, Coronavirus , Animals , Mice , Dexamethasone , Interleukin-6 , Lung , SARS-CoV-2 , Toll-Like Receptor 4 , Tumor Necrosis Factor-alpha , Xanthones/pharmacology , Inflammation/drug therapy
4.
J Leukoc Biol ; 111(6): 1147-1158, 2022 06.
Article in English | MEDLINE | ID: mdl-34826347

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) is characterized by lung injury, cytokine storm, and increased neutrophil-to-lymphocyte ratio (NLR). Current therapies focus on reducing viral replication and inflammatory responses, but no specific treatment exists to prevent the development of severe COVID-19 in infected individuals. Angiotensin-converting enzyme-2 (ACE2) is the receptor for SARS-CoV-2, the virus causing COVID-19, but it is also critical for maintaining the correct functionality of lung epithelium and endothelium. Coronaviruses induce activation of a disintegrin and metalloprotease 17 (ADAM17) and shedding of ACE2 from the cell surface resulting in exacerbated inflammatory responses. Thus, we hypothesized that ADAM17 inhibition ameliorates COVID-19-related lung inflammation. We employed a preclinical mouse model using intratracheal instillation of a combination of polyinosinic:polycytidylic acid (poly(I:C)) and the receptor-binding domain of the SARS-CoV-2 spike protein (RBD-S) to mimic lung damage associated with COVID-19. Histologic analysis of inflamed mice confirmed the expected signs of lung injury including edema, fibrosis, vascular congestion, and leukocyte infiltration. Moreover, inflamed mice also showed an increased NLR as observed in critically ill COVID-19 patients. Administration of the ADAM17/MMP inhibitors apratastat and TMI-1 significantly improved lung histology and prevented leukocyte infiltration. Reduced leukocyte recruitment could be explained by reduced production of proinflammatory cytokines and lower levels of the endothelial adhesion molecules ICAM-1 and VCAM-1. Additionally, the NLR was significantly reduced by ADAM17/MMP inhibition. Thus, we propose inhibition of ADAM17/MMP as a novel promising treatment strategy in SARS-CoV-2-infected individuals to prevent the progression toward severe COVID-19.


Subject(s)
COVID-19 Drug Treatment , Lung Injury , ADAM17 Protein , Angiotensin-Converting Enzyme 2 , Animals , Disease Models, Animal , Humans , Lung Injury/etiology , Lung Injury/prevention & control , Matrix Metalloproteinases , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
5.
Diagnostics (Basel) ; 11(10)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34679506

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has reached an unprecedented level. There is a strong demand for diagnostic and serological supplies worldwide, making it necessary for countries to establish their own technologies to produce high-quality biomolecules. The two main viral antigens used for the diagnostics for severe acute respiratory syndrome coronavirus (SARS-CoV-2) are the structural proteins spike (S) protein and nucleocapsid (N) protein. The spike protein of SARS-CoV-2 is cleaved into S1 and S2, in which the S1 subunit has the receptor-binding domain (RBD), which induces the production of neutralizing antibodies, whereas nucleocapsid is an ideal target for viral antigen-based detection. In this study, we designed plasmids, pcDNA3.1/S1 and pcDNA3.1/N, and optimized their expression of the recombinant S1 and N proteins from SARS-CoV-2 in a mammalian system. The RBD was used as a control. The antigens were successfully purified from Expi293 cells, with high yields of the S1, N, and RBD proteins. The immunogenic abilities of these proteins were demonstrated in a mouse model. Further, enzyme-linked immunosorbent assays with human serum samples showed that the SARS-CoV-2 antigens are a suitable alternative for serological assays to identify patients infected with COVID-19.

6.
Vaccines (Basel) ; 9(8)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34452053

ABSTRACT

The Receptor-Binding Domain (RBD) of the Spike (S) protein from Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has glycosylation sites which can limit the production of reliable antigens expressed in prokaryotic platforms, due to glycan-mediated evasion of the host immune response. However, protein regions without glycosylated residues capable of inducing neutralizing antibodies could be useful for antigen production in systems that do not carry the glycosylation machinery. To test this hypothesis, the potential antigens NG06 and NG19, located within the non-glycosylated S-RBD region, were selected and expressed in Escherichia coli, purified by FPLC and employed to determine their immunogenic potential through detection of antibodies in serum from immunized rabbits, mice, and COVID-19 patients. IgG antibodies from sera of COVID-19-recovered patients detected the recombinant antigens NG06 and NG19 (A450 nm = 0.80 ± 0.33; 1.13 ± 0.33; and 0.11 ± 0.08 for and negatives controls, respectively). Also, the purified antigens were able to raise polyclonal antibodies in animal models evoking a strong immune response with neutralizing activity in mice model. This research highlights the usefulness of antigens based on the non-N-glycosylated region of RBD from SARS-CoV-2 for candidate vaccine development.

SELECTION OF CITATIONS
SEARCH DETAIL
...